1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
//! A stream that efficiently multiplexes multiple streams.
//!
//! This "combinator" provides the ability to maintain and drive a set of streams to completion,
//! while also providing access to each stream as it yields new elements.
//!
//! Streams are pushed into this set and their realized values are yielded as they are produced.
//! This structure is optimized to manage a large number of streams. Streams managed by
//! `StreamUnordered` will only be polled when they generate notifications. This reduces the
//! required amount of work needed to coordinate large numbers of streams.
//!
//! When a `StreamUnordered` is first created, it does not contain any streams. Calling `poll` in
//! this state will result in `Poll::Ready((None)` to be returned. Streams are submitted to the
//! set using `push`; however, the stream will **not** be polled at this point. `StreamUnordered`
//! will only poll managed streams when `StreamUnordered::poll` is called. As such, it is important
//! to call `poll` after pushing new streams.
//!
//! If `StreamUnordered::poll` returns `Poll::Ready(None)` this means that the set is
//! currently not managing any streams. A stream may be submitted to the set at a later time. At
//! that point, a call to `StreamUnordered::poll` will either return the stream's resolved value
//! **or** `Poll::Pending` if the stream has not yet completed.
//!
//! Whenever a value is yielded, the yielding stream's index is also included. A reference to the
//! stream that originated the value is obtained by using [`StreamUnordered::get`],
//! [`StreamUnordered::get_mut`], or [`StreamUnordered::get_pin_mut`].
//!
//! In normal operation, `poll` will yield a `StreamYield::Item` when it completes successfully.
//! This value indicates that an underlying stream (the one indicated by the included index)
//! produced an item. If an underlying stream yields `Poll::Ready(None)` to indicate termination,
//! a `StreamYield::Finished` is returned instead. Note that as soon as a stream returns
//! `StreamYield::Finished`, its token may be reused for new streams that are added.

#![deny(missing_docs)]
#![warn(rust_2018_idioms)]

// This is mainly FuturesUnordered from futures_util, but adapted to operate over Streams rather
// than Futures.

extern crate alloc;

use alloc::sync::{Arc, Weak};
use core::cell::UnsafeCell;
use core::fmt::{self, Debug};
use core::iter::FromIterator;
use core::marker::PhantomData;
use core::mem;
use core::ops::{Index, IndexMut};
use core::pin::Pin;
use core::ptr;
use core::sync::atomic::Ordering::{AcqRel, Acquire, Relaxed, Release, SeqCst};
use core::sync::atomic::{AtomicBool, AtomicPtr};
use futures_core::stream::{FusedStream, Stream};
use futures_core::task::{Context, Poll};
use futures_util::task::{ArcWake, AtomicWaker};

mod abort;

mod iter;
pub use self::iter::{IterMut, IterPinMut};

mod task;
use self::task::Task;

mod ready_to_run_queue;
use self::ready_to_run_queue::{Dequeue, ReadyToRunQueue};

/// Constant used for a `StreamUnordered` to determine how many times it is
/// allowed to poll underlying futures without yielding.
///
/// A single call to `poll_next` may potentially do a lot of work before
/// yielding. This happens in particular if the underlying futures are awoken
/// frequently but continue to return `Pending`. This is problematic if other
/// tasks are waiting on the executor, since they do not get to run. This value
/// caps the number of calls to `poll` on underlying streams a single call to
/// `poll_next` is allowed to make.
///
/// The value itself is chosen somewhat arbitrarily. It needs to be high enough
/// that amortize wakeup and scheduling costs, but low enough that we do not
/// starve other tasks for long.
///
/// See also https://github.com/rust-lang/futures-rs/issues/2047.
const YIELD_EVERY: usize = 32;

/// A set of streams which may yield items in any order.
///
/// This structure is optimized to manage a large number of streams.
/// Streams managed by [`StreamUnordered`] will only be polled when they
/// generate wake-up notifications. This reduces the required amount of work
/// needed to poll large numbers of streams.
///
/// [`StreamUnordered`] can be filled by [`collect`](Iterator::collect)ing an
/// iterator of streams into a [`StreamUnordered`], or by
/// [`push`](StreamUnordered::push)ing streams onto an existing
/// [`StreamUnordered`]. When new streams are added,
/// [`poll_next`](Stream::poll_next) must be called in order to begin receiving
/// wake-ups for new streams.
///
/// Note that you can create a ready-made [`StreamUnordered`] via the
/// [`collect`](Iterator::collect) method, or you can start with an empty set
/// with the [`StreamUnordered::new`] constructor.
#[must_use = "streams do nothing unless polled"]
pub struct StreamUnordered<S> {
    ready_to_run_queue: Arc<ReadyToRunQueue<S>>,
    head_all: AtomicPtr<Task<S>>,
    is_terminated: AtomicBool,
    by_id: slab::Slab<*const Task<S>>,
}

unsafe impl<S: Send> Send for StreamUnordered<S> {}
unsafe impl<S: Sync> Sync for StreamUnordered<S> {}
impl<S> Unpin for StreamUnordered<S> {}

// StreamUnordered is implemented using two linked lists. One which links all
// streams managed by a `StreamUnordered` and one that tracks streams that have
// been scheduled for polling. The first linked list allows for thread safe
// insertion of nodes at the head as well as forward iteration, but is otherwise
// not thread safe and is only accessed by the thread that owns the
// `StreamUnordered` value for any other operations. The second linked list is
// an implementation of the intrusive MPSC queue algorithm described by
// 1024cores.net.
//
// When a stream is submitted to the set, a task is allocated and inserted in
// both linked lists. The next call to `poll_next` will (eventually) see this
// task and call `poll` on the stream.
//
// Before a managed stream is polled, the current context's waker is replaced
// with one that is aware of the specific stream being run. This ensures that
// wake-up notifications generated by that specific stream are visible to
// `StreamUnordered`. When a wake-up notification is received, the task is
// inserted into the ready to run queue, so that its stream can be polled later.
//
// Each task is wrapped in an `Arc` and thereby atomically reference counted.
// Also, each task contains an `AtomicBool` which acts as a flag that indicates
// whether the task is currently inserted in the atomic queue. When a wake-up
// notifiaction is received, the task will only be inserted into the ready to
// run queue if it isn't inserted already.

/// A handle to an vacant stream slot in a `StreamUnordered`.
///
/// `StreamEntry` allows constructing streams that hold the token that they will be assigned.
#[derive(Debug)]
pub struct StreamEntry<'a, S> {
    token: usize,
    inserted: bool,
    backref: &'a mut StreamUnordered<S>,
}

impl<'a, S: 'a> StreamEntry<'a, S> {
    /// Insert a stream in the slot, and return a mutable reference to the value.
    ///
    /// To get the token associated with the stream, use key prior to calling insert.
    pub fn insert(mut self, stream: S) {
        self.inserted = true;

        // this is safe because we've held &mut StreamUnordered the entire time,
        // so the token still points to a valid task, and no-one else is
        // touching the .stream of it.
        unsafe {
            (*(*self.backref.by_id[self.token]).stream.get()) = Some(stream);
        }
    }

    /// Return the token associated with this slot.
    ///
    /// A stream stored in this slot will be associated with this token.
    pub fn token(&self) -> usize {
        self.token
    }
}

impl<'a, S: 'a> Drop for StreamEntry<'a, S> {
    fn drop(&mut self) {
        if !self.inserted {
            // undo the insertion
            let task_ptr = self.backref.by_id.remove(self.token);

            // we know task_ptr points to a valid task, since the StreamEntry
            // has held the &mut StreamUnordered the entire time.
            let task = unsafe { self.backref.unlink(task_ptr) };
            self.backref.release_task(task);
        }
    }
}

impl<S: Stream> StreamUnordered<S> {
    /// Constructs a new, empty [`StreamUnordered`].
    ///
    /// The returned [`StreamUnordered`] does not contain any streams.
    /// In this state, [`StreamUnordered::poll_next`](Stream::poll_next) will
    /// return [`Poll::Ready(None)`](Poll::Ready).
    pub fn new() -> StreamUnordered<S> {
        let mut slab = slab::Slab::new();
        let slot = slab.vacant_entry();
        let stub = Arc::new(Task {
            stream: UnsafeCell::new(None),
            is_done: UnsafeCell::new(false),
            next_all: AtomicPtr::new(ptr::null_mut()),
            prev_all: UnsafeCell::new(ptr::null()),
            len_all: UnsafeCell::new(0),
            next_ready_to_run: AtomicPtr::new(ptr::null_mut()),
            queued: AtomicBool::new(true),
            ready_to_run_queue: Weak::new(),
            id: slot.key(),
        });
        let stub_ptr = &*stub as *const Task<S>;
        let _ = slab.insert(stub_ptr);

        let ready_to_run_queue = Arc::new(ReadyToRunQueue {
            waker: AtomicWaker::new(),
            head: AtomicPtr::new(stub_ptr as *mut _),
            tail: UnsafeCell::new(stub_ptr),
            stub,
        });

        StreamUnordered {
            head_all: AtomicPtr::new(ptr::null_mut()),
            ready_to_run_queue,
            is_terminated: AtomicBool::new(false),
            by_id: slab,
        }
    }
}

impl<S: Stream> Default for StreamUnordered<S> {
    fn default() -> StreamUnordered<S> {
        StreamUnordered::new()
    }
}

impl<S> StreamUnordered<S> {
    /// Returns the number of streams contained in the set.
    ///
    /// This represents the total number of in-flight streams.
    pub fn len(&self) -> usize {
        let (_, len) = self.atomic_load_head_and_len_all();
        len
    }

    /// Returns `true` if the set contains no streams.
    pub fn is_empty(&self) -> bool {
        // Relaxed ordering can be used here since we don't need to read from
        // the head pointer, only check whether it is null.
        self.head_all.load(Relaxed).is_null()
    }

    /// Returns a handle to a vacant stream entry allowing for further manipulation.
    ///
    /// This function is useful when creating values that must contain their stream token. The
    /// returned `StreamEntry` reserves an entry for the stream and is able to query the associated
    /// token.
    pub fn stream_entry<'a>(&'a mut self) -> StreamEntry<'a, S> {
        let next_all = self.pending_next_all();
        let slot = self.by_id.vacant_entry();
        let token = slot.key();

        let task = Arc::new(Task {
            stream: UnsafeCell::new(None),
            is_done: UnsafeCell::new(false),
            next_all: AtomicPtr::new(next_all),
            prev_all: UnsafeCell::new(ptr::null_mut()),
            len_all: UnsafeCell::new(0),
            next_ready_to_run: AtomicPtr::new(ptr::null_mut()),
            queued: AtomicBool::new(true),
            ready_to_run_queue: Arc::downgrade(&self.ready_to_run_queue),
            id: token,
        });

        let _ = slot.insert(&*task as *const _);

        // Reset the `is_terminated` flag if we've previously marked ourselves
        // as terminated.
        self.is_terminated.store(false, Relaxed);

        // Right now our task has a strong reference count of 1. We transfer
        // ownership of this reference count to our internal linked list
        // and we'll reclaim ownership through the `unlink` method below.
        let ptr = self.link(task);

        // We'll need to get the stream "into the system" to start tracking it,
        // e.g. getting its wake-up notifications going to us tracking which
        // streams are ready. To do that we unconditionally enqueue it for
        // polling here.
        self.ready_to_run_queue.enqueue(ptr);

        StreamEntry {
            token,
            inserted: false,
            backref: self,
        }
    }

    /// Push a stream into the set.
    ///
    /// This method adds the given stream to the set. This method will not
    /// call [`poll_next`](futures_util::stream::Stream::poll_next) on the submitted stream. The caller must
    /// ensure that [`StreamUnordered::poll_next`](Stream::poll_next) is called
    /// in order to receive wake-up notifications for the given stream.
    ///
    /// The returned token is an identifier that uniquely identifies the given stream in the
    /// current set. To get a handle to the pushed stream, pass the token to
    /// [`StreamUnordered::get`], [`StreamUnordered::get_mut`], or [`StreamUnordered::get_pin_mut`]
    /// (or just index `StreamUnordered` directly). The same token will be yielded whenever an
    /// element is pulled from this stream.
    pub fn push(&mut self, stream: S) -> usize {
        let s = self.stream_entry();
        let token = s.token();
        s.insert(stream);
        token
    }

    /// Remove a stream from the set.
    ///
    /// The stream will be dropped and will no longer yield stream events.
    pub fn remove(mut self: Pin<&mut Self>, token: usize) -> bool {
        if token == 0 {
            return false;
        }

        let task = if let Some(task) = self.by_id.get(token) {
            *task
        } else {
            return false;
        };

        // we know that by_id only references valid tasks
        let task = unsafe { self.unlink(task) };
        self.release_task(task);
        true
    }

    /// Remove and return a stream from the set.
    ///
    /// The stream will no longer be polled, and will no longer yield stream events.
    ///
    /// Note that since this method moves `S`, which we may have given out a `Pin` to, it requires
    /// that `S` is `Unpin`.
    pub fn take(mut self: Pin<&mut Self>, token: usize) -> Option<S>
    where
        S: Unpin,
    {
        if token == 0 {
            return None;
        }

        let task = *self.by_id.get(token)?;

        // we know that by_id only references valid tasks
        let task = unsafe { self.unlink(task) };

        // This is safe because we're dropping the stream on the thread that owns
        // `StreamUnordered`, which correctly tracks `S`'s lifetimes and such.
        // The logic is the same as for why release_task is allowed to touch task.stream.
        // Since S: Unpin, it is okay for us to move S.
        let stream = unsafe { &mut *task.stream.get() }.take();

        self.release_task(task);

        stream
    }

    /// Returns `true` if the stream with the given token has yielded `None`.
    pub fn is_finished(&self, token: usize) -> Option<bool> {
        if token == 0 {
            return None;
        }

        // we know that by_id only references valid tasks
        Some(unsafe { (*(**self.by_id.get(token)?).is_done.get()) })
    }

    /// Returns a reference to the stream with the given token
    pub fn get<'a>(&'a self, token: usize) -> Option<&'a S> {
        // don't allow access to the 0th task, since it's not a stream
        if token == 0 {
            return None;
        }

        // we know that by_id only references valid tasks
        Some(unsafe { (*(**self.by_id.get(token)?).stream.get()).as_ref().unwrap() })
    }

    /// Returns a reference that allows modifying the stream with the given token.
    pub fn get_mut<'a>(&'a mut self, token: usize) -> Option<&'a mut S>
    where
        S: Unpin,
    {
        // don't allow access to the 0th task, since it's not a stream
        if token == 0 {
            return None;
        }

        // this is safe for the same reason that IterMut::next is safe
        Some(unsafe {
            (*(**self.by_id.get_mut(token)?).stream.get())
                .as_mut()
                .unwrap()
        })
    }

    /// Returns a pinned reference that allows modifying the stream with the given token.
    pub fn get_pin_mut<'a>(mut self: Pin<&'a mut Self>, token: usize) -> Option<Pin<&'a mut S>> {
        // don't allow access to the 0th task, since it's not a stream
        if token == 0 {
            return None;
        }

        // this is safe for the same reason that IterPinMut::next is safe
        Some(unsafe {
            Pin::new_unchecked(
                (*(**self.by_id.get_mut(token)?).stream.get())
                    .as_mut()
                    .unwrap(),
            )
        })
    }

    /// Returns an iterator that allows modifying each stream in the set.
    pub fn iter_mut(&mut self) -> IterMut<'_, S>
    where
        S: Unpin,
    {
        IterMut(Pin::new(self).iter_pin_mut())
    }

    /// Returns an iterator that allows modifying each stream in the set.
    pub fn iter_pin_mut(mut self: Pin<&mut Self>) -> IterPinMut<'_, S> {
        // `head_all` can be accessed directly and we don't need to spin on
        // `Task::next_all` since we have exclusive access to the set.
        let task = *self.head_all.get_mut();
        let len = if task.is_null() {
            0
        } else {
            unsafe { *(*task).len_all.get() }
        };

        IterPinMut {
            task,
            len,
            _marker: PhantomData,
        }
    }

    /// Returns the current head node and number of streams in the list of all
    /// streams within a context where access is shared with other threads
    /// (mostly for use with the `len` and `iter_pin_ref` methods).
    fn atomic_load_head_and_len_all(&self) -> (*const Task<S>, usize) {
        let task = self.head_all.load(Acquire);
        let len = if task.is_null() {
            0
        } else {
            unsafe {
                (*task).spin_next_all(self.pending_next_all(), Acquire);
                *(*task).len_all.get()
            }
        };

        (task, len)
    }

    /// Releases the task. It destorys the stream inside and either drops
    /// the `Arc<Task>` or transfers ownership to the ready to run queue.
    /// The task this method is called on must have been unlinked before.
    fn release_task(&mut self, task: Arc<Task<S>>) {
        self.by_id.remove(task.id);

        // `release_task` must only be called on unlinked tasks
        debug_assert_eq!(task.next_all.load(Relaxed), self.pending_next_all());
        unsafe {
            debug_assert!((*task.prev_all.get()).is_null());
        }

        // The stream is done, try to reset the queued flag. This will prevent
        // `wake` from doing any work in the stream
        let prev = task.queued.swap(true, SeqCst);

        // Drop the stream, even if it hasn't finished yet. This is safe
        // because we're dropping the stream on the thread that owns
        // `StreamUnordered`, which correctly tracks `S`'s lifetimes and
        // such.
        unsafe {
            // Set to `None` rather than `take()`ing to prevent moving the
            // stream.
            *task.stream.get() = None;
        }

        // If the queued flag was previously set, then it means that this task
        // is still in our internal ready to run queue. We then transfer
        // ownership of our reference count to the ready to run queue, and it'll
        // come along and free it later, noticing that the stream is `None`.
        //
        // If, however, the queued flag was *not* set then we're safe to
        // release our reference count on the task. The queued flag was set
        // above so all stream `enqueue` operations will not actually
        // enqueue the task, so our task will never see the ready to run queue
        // again. The task itself will be deallocated once all reference counts
        // have been dropped elsewhere by the various wakers that contain it.
        if prev {
            mem::forget(task);
        }
    }

    /// Insert a new task into the internal linked list.
    fn link(&self, task: Arc<Task<S>>) -> *const Task<S> {
        // `next_all` should already be reset to the pending state before this
        // function is called.
        debug_assert_eq!(task.next_all.load(Relaxed), self.pending_next_all());
        let ptr = Arc::into_raw(task);

        // Atomically swap out the old head node to get the node that should be
        // assigned to `next_all`.
        let next = self.head_all.swap(ptr as *mut _, AcqRel);

        unsafe {
            // Store the new list length in the new node.
            let new_len = if next.is_null() {
                1
            } else {
                // Make sure `next_all` has been written to signal that it is
                // safe to read `len_all`.
                (*next).spin_next_all(self.pending_next_all(), Acquire);
                *(*next).len_all.get() + 1
            };
            *(*ptr).len_all.get() = new_len;

            // Write the old head as the next node pointer, signaling to other
            // threads that `len_all` and `next_all` are ready to read.
            (*ptr).next_all.store(next, Release);

            // `prev_all` updates don't need to be synchronized, as the field is
            // only ever used after exclusive access has been acquired.
            if !next.is_null() {
                *(*next).prev_all.get() = ptr;
            }
        }

        ptr
    }

    /// Remove the task from the linked list tracking all tasks currently
    /// managed by `StreamUnordered`.
    /// This method is unsafe because it has be guaranteed that `task` is a
    /// valid pointer.
    unsafe fn unlink(&mut self, task: *const Task<S>) -> Arc<Task<S>> {
        // Compute the new list length now in case we're removing the head node
        // and won't be able to retrieve the correct length later.
        let head = *self.head_all.get_mut();
        debug_assert!(!head.is_null());
        let new_len = *(*head).len_all.get() - 1;

        let task = Arc::from_raw(task);
        let next = task.next_all.load(Relaxed);
        let prev = *task.prev_all.get();
        task.next_all.store(self.pending_next_all(), Relaxed);
        *task.prev_all.get() = ptr::null_mut();

        if !next.is_null() {
            *(*next).prev_all.get() = prev;
        }

        if !prev.is_null() {
            (*prev).next_all.store(next, Relaxed);
        } else {
            *self.head_all.get_mut() = next;
        }

        // Store the new list length in the head node.
        let head = *self.head_all.get_mut();
        if !head.is_null() {
            *(*head).len_all.get() = new_len;
        }

        task
    }

    /// Returns the reserved value for `Task::next_all` to indicate a pending
    /// assignment from the thread that inserted the task.
    ///
    /// `StreamUnordered::link` needs to update `Task` pointers in an order
    /// that ensures any iterators created on other threads can correctly
    /// traverse the entire `Task` list using the chain of `next_all` pointers.
    /// This could be solved with a compare-exchange loop that stores the
    /// current `head_all` in `next_all` and swaps out `head_all` with the new
    /// `Task` pointer if the head hasn't already changed. Under heavy thread
    /// contention, this compare-exchange loop could become costly.
    ///
    /// An alternative is to initialize `next_all` to a reserved pending state
    /// first, perform an atomic swap on `head_all`, and finally update
    /// `next_all` with the old head node. Iterators will then either see the
    /// pending state value or the correct next node pointer, and can reload
    /// `next_all` as needed until the correct value is loaded. The number of
    /// retries needed (if any) would be small and will always be finite, so
    /// this should generally perform better than the compare-exchange loop.
    ///
    /// A valid `Task` pointer in the `head_all` list is guaranteed to never be
    /// this value, so it is safe to use as a reserved value until the correct
    /// value can be written.
    fn pending_next_all(&self) -> *mut Task<S> {
        // The `ReadyToRunQueue` stub is never inserted into the `head_all`
        // list, and its pointer value will remain valid for the lifetime of
        // this `StreamUnordered`, so we can make use of its value here.
        &*self.ready_to_run_queue.stub as *const _ as *mut _
    }
}

impl<S> Index<usize> for StreamUnordered<S> {
    type Output = S;

    fn index(&self, stream: usize) -> &Self::Output {
        self.get(stream).unwrap()
    }
}

impl<S> IndexMut<usize> for StreamUnordered<S>
where
    S: Unpin,
{
    fn index_mut(&mut self, stream: usize) -> &mut Self::Output {
        self.get_mut(stream).unwrap()
    }
}

/// An event that occurred for a managed stream.
pub enum StreamYield<S>
where
    S: Stream,
{
    /// The underlying stream produced an item.
    Item(S::Item),
    /// The underlying stream has completed.
    Finished(FinishedStream),
}

/// A stream that has yielded all the items it ever will.
///
/// The underlying stream will only be dropped by explicitly removing it from the associated
/// `StreamUnordered`. This method is marked as `#[must_use]` to ensure that you either remove the
/// stream immediately, or you explicitly ask for it to be kept around for later use.
///
/// If the `FinishedStream` is dropped, the exhausted stream will not be dropped until the owning
/// `StreamUnordered` is.
#[must_use]
pub struct FinishedStream {
    token: usize,
}

impl FinishedStream {
    /// Remove the exhausted stream.
    ///
    /// See [`StreamUnordered::remove`].
    pub fn remove<S>(self, so: Pin<&mut StreamUnordered<S>>) {
        so.remove(self.token);
    }

    /// Take the exhausted stream.
    ///
    /// Note that this requires `S: Unpin` since it moves the stream even though it has already
    /// been pinned by `StreamUnordered`.
    ///
    /// See [`StreamUnordered::take`].
    pub fn take<S>(self, so: Pin<&mut StreamUnordered<S>>) -> Option<S>
    where
        S: Unpin,
    {
        so.take(self.token)
    }

    /// Leave the exhausted stream in the `StreamUnordered`.
    ///
    /// This allows you to continue to access the stream through [`StreamUnordered::get_mut`] and
    /// friends should you need to perform further operations on it (e.g., if it is also being used
    /// as a `Sink`). Note that the stream will then not be dropped until you explicitly `remove`
    /// or `take` it from the `StreamUnordered`.
    pub fn keep(self) {}

    /// Return the token associated with the exhausted stream.
    pub fn token(self) -> usize {
        self.token
    }
}

impl<S> Debug for StreamYield<S>
where
    S: Stream,
    S::Item: Debug,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            StreamYield::Item(ref i) => f.debug_tuple("StreamYield::Item").field(i).finish(),
            StreamYield::Finished(_) => f.debug_tuple("StreamYield::Finished").finish(),
        }
    }
}

impl<S> PartialEq for StreamYield<S>
where
    S: Stream,
    S::Item: PartialEq,
{
    fn eq(&self, other: &Self) -> bool {
        match (self, other) {
            (&StreamYield::Item(ref s), &StreamYield::Item(ref o)) => s == o,
            _ => false,
        }
    }
}

impl<S: Stream> Stream for StreamUnordered<S> {
    type Item = (StreamYield<S>, usize);

    fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
        // Keep track of how many child futures we have polled,
        // in case we want to forcibly yield.
        let mut polled = 0;

        // Ensure `parent` is correctly set.
        self.ready_to_run_queue.waker.register(cx.waker());

        loop {
            // Safety: &mut self guarantees the mutual exclusion `dequeue`
            // expects
            let task = match unsafe { self.ready_to_run_queue.dequeue() } {
                Dequeue::Empty => {
                    if self.is_empty() {
                        // We can only consider ourselves terminated once we
                        // have yielded a `None`
                        *self.is_terminated.get_mut() = true;
                        return Poll::Ready(None);
                    } else {
                        return Poll::Pending;
                    }
                }
                Dequeue::Inconsistent => {
                    // At this point, it may be worth yielding the thread &
                    // spinning a few times... but for now, just yield using the
                    // task system.
                    cx.waker().wake_by_ref();
                    return Poll::Pending;
                }
                Dequeue::Data(task) => task,
            };

            debug_assert!(task != self.ready_to_run_queue.stub());

            // Safety:
            // - `task` is a valid pointer.
            // - We are the only thread that accesses the `UnsafeCell` that
            //   contains the stream
            let stream = match unsafe { &mut *(*task).stream.get() } {
                Some(stream) => stream,

                // If the stream has already gone away then we're just
                // cleaning out this task. See the comment in
                // `release_task` for more information, but we're basically
                // just taking ownership of our reference count here.
                None => {
                    // This case only happens when `release_task` was called
                    // for this task before and couldn't drop the task
                    // because it was already enqueued in the ready to run
                    // queue.

                    // Safety: `task` is a valid pointer
                    let task = unsafe { Arc::from_raw(task) };

                    // Double check that the call to `release_task` really
                    // happened. Calling it required the task to be unlinked.
                    debug_assert_eq!(task.next_all.load(Relaxed), self.pending_next_all());
                    unsafe {
                        debug_assert!((*task.prev_all.get()).is_null());
                    }
                    continue;
                }
            };

            // Safety: we only ever access is_done on the thread that owns StreamUnordered.
            if unsafe { *(*task).is_done.get() } {
                // This stream has already been polled to completion.
                // We're keeping it around because the user has not removed it yet.
                // We can ignore any wake-ups for the Stream.
                continue;
            }

            // Safety: `task` is a valid pointer
            let task = unsafe { self.unlink(task) };

            // Unset queued flag: This must be done before polling to ensure
            // that the stream's task gets rescheduled if it sends a wake-up
            // notification **during** the call to `poll`.
            let prev = task.queued.swap(false, SeqCst);
            assert!(prev);

            // We're going to need to be very careful if the `poll`
            // method below panics. We need to (a) not leak memory and
            // (b) ensure that we still don't have any use-after-frees. To
            // manage this we do a few things:
            //
            // * A "bomb" is created which if dropped abnormally will call
            //   `release_task`. That way we'll be sure the memory management
            //   of the `task` is managed correctly. In particular
            //   `release_task` will drop the steam. This ensures that it is
            //   dropped on this thread and not accidentally on a different
            //   thread (bad).
            // * We unlink the task from our internal queue to preemptively
            //   assume it'll panic, in which case we'll want to discard it
            //   regardless.
            struct Bomb<'a, S> {
                queue: &'a mut StreamUnordered<S>,
                task: Option<Arc<Task<S>>>,
            }

            impl<S> Drop for Bomb<'_, S> {
                fn drop(&mut self) {
                    if let Some(task) = self.task.take() {
                        self.queue.release_task(task);
                    }
                }
            }

            let id = task.id;
            let mut bomb = Bomb {
                task: Some(task),
                queue: &mut *self,
            };

            // Poll the underlying stream with the appropriate waker
            // implementation. This is where a large bit of the unsafety
            // starts to stem from internally. The waker is basically just
            // our `Arc<Task<S>>` and can schedule the stream for polling by
            // enqueuing itself in the ready to run queue.
            //
            // Critically though `Task<S>` won't actually access `S`, the
            // stream, while it's floating around inside of wakers.
            // These structs will basically just use `S` to size
            // the internal allocation, appropriately accessing fields and
            // deallocating the task if need be.
            let res = {
                let waker = Task::waker_ref(bomb.task.as_ref().unwrap());
                let mut cx = Context::from_waker(&waker);

                // Safety: We won't move the stream ever again
                let stream = unsafe { Pin::new_unchecked(stream) };

                stream.poll_next(&mut cx)
            };
            polled += 1;

            match res {
                Poll::Pending => {
                    let task = bomb.task.take().unwrap();
                    bomb.queue.link(task);

                    if polled == YIELD_EVERY {
                        // We have polled a large number of futures in a row without yielding.
                        // To ensure we do not starve other tasks waiting on the executor,
                        // we yield here, but immediately wake ourselves up to continue.
                        cx.waker().wake_by_ref();
                        return Poll::Pending;
                    }
                    continue;
                }
                Poll::Ready(None) => {
                    // The stream has completed -- let the user know.
                    // Note that we do not remove the stream here. Instead, we let the user decide
                    // whether to keep the stream for a bit longer, in case they still need to do
                    // some work with it (like if it's also a Sink and they need to flush some more
                    // stuff).

                    // Safe as we only ever access is_done on the thread that owns StreamUnordered.
                    let task = bomb.task.take().unwrap();
                    unsafe {
                        *task.is_done.get() = true;
                    }
                    bomb.queue.link(task);

                    return Poll::Ready(Some((
                        StreamYield::Finished(FinishedStream { token: id }),
                        id,
                    )));
                }
                Poll::Ready(Some(output)) => {
                    // We're not done with the stream just because it yielded something
                    // We're going to need to poll it again!
                    Task::wake_by_ref(bomb.task.as_ref().unwrap());

                    // And also return it to the task queue
                    let task = bomb.task.take().unwrap();
                    bomb.queue.link(task);

                    return Poll::Ready(Some((StreamYield::Item(output), id)));
                }
            }
        }
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        let len = self.len();
        (len, Some(len))
    }
}

impl<S> Debug for StreamUnordered<S> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "StreamUnordered {{ ... }}")
    }
}

impl<S> Drop for StreamUnordered<S> {
    fn drop(&mut self) {
        // When a `StreamUnordered` is dropped we want to drop all streams
        // associated with it. At the same time though there may be tons of
        // wakers flying around which contain `Task<S>` references
        // inside them. We'll let those naturally get deallocated.
        unsafe {
            while !self.head_all.get_mut().is_null() {
                let head = *self.head_all.get_mut();
                let task = self.unlink(head);
                self.release_task(task);
            }
        }

        // Note that at this point we could still have a bunch of tasks in the
        // ready to run queue. None of those tasks, however, have streams
        // associated with them so they're safe to destroy on any thread. At
        // this point the `StreamUnordered` struct, the owner of the one strong
        // reference to the ready to run queue will drop the strong reference.
        // At that point whichever thread releases the strong refcount last (be
        // it this thread or some other thread as part of an `upgrade`) will
        // clear out the ready to run queue and free all remaining tasks.
        //
        // While that freeing operation isn't guaranteed to happen here, it's
        // guaranteed to happen "promptly" as no more "blocking work" will
        // happen while there's a strong refcount held.
    }
}

impl<S: Stream> FromIterator<S> for StreamUnordered<S> {
    fn from_iter<I>(iter: I) -> Self
    where
        I: IntoIterator<Item = S>,
    {
        let acc = StreamUnordered::new();
        iter.into_iter().fold(acc, |mut acc, item| {
            acc.push(item);
            acc
        })
    }
}

impl<S: Stream> FusedStream for StreamUnordered<S> {
    fn is_terminated(&self) -> bool {
        self.is_terminated.load(Relaxed)
    }
}

#[cfg(test)]
mod micro {
    use super::*;
    use futures_util::{stream, stream::StreamExt};
    use std::pin::Pin;

    #[test]
    fn no_starvation() {
        let forever0 = Box::pin(stream::iter(vec![0].into_iter().cycle()));
        let forever1 = Box::pin(stream::iter(vec![1].into_iter().cycle()));
        let two = Box::pin(stream::iter(vec![2].into_iter()));
        let mut s = StreamUnordered::new();
        let forever0 = s.push(forever0 as Pin<Box<dyn Stream<Item = i32>>>);
        let forever1 = s.push(forever1 as Pin<Box<dyn Stream<Item = i32>>>);
        let two = s.push(two as Pin<Box<dyn Stream<Item = i32>>>);
        let mut rt = tokio::runtime::Builder::new()
            .basic_scheduler()
            .build()
            .unwrap();
        let mut s = rt.block_on(s.take(100).collect::<Vec<_>>()).into_iter();
        let mut got_two = false;
        let mut got_two_end = false;
        while let Some((v, si)) = s.next() {
            if let StreamYield::Item(v) = v {
                if si == two {
                    assert_eq!(v, 2);
                    got_two = true;
                } else if si == forever0 {
                    assert_eq!(v, 0);
                } else if si == forever1 {
                    assert_eq!(v, 1);
                } else {
                    unreachable!("unknown stream {} yielded {}", si, v);
                }
            } else if si == two {
                got_two_end = true;
            } else {
                unreachable!("unexpected stream end for stream {}", si);
            }
        }
        assert!(got_two, "stream was starved");
        assert!(got_two_end, "stream end was not announced");
    }
}