1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
#![warn(
    missing_docs,
    missing_debug_implementations,
    missing_copy_implementations,
    trivial_casts,
    trivial_numeric_casts,
    unreachable_pub,
    unsafe_code,
    unstable_features,
    unused_import_braces,
    unused_qualifications
)]
/*!
This crate provides stream multiplexing with channels.

Channels have their own backpressure that does not affect other channels.

Incoming streams are by default set to channel 0 and can be moved to other channels via `ControlMessage`s.

```rust
# use std::error::Error;
use bytes::Bytes;
use tokio::net::TcpListener;
use tokio::io::{AsyncReadExt, AsyncWriteExt};
use tokio::sync::mpsc;
use stream_multiplexer::{Multiplexer, HalvesStream, ControlMessage, IncomingPacket, OutgoingPacket};
use futures::stream::StreamExt;

# fn main() -> Result<(), Box<dyn Error>> {
# tokio::runtime::Builder::new().basic_scheduler().enable_all().build().unwrap().block_on(async move {
// 3 channels of incoming streams, 0 is the channel that new streams join.
// Backpressure is per channel. Streams can be moved between channels by
// sending an OutgoingPacket::ChangeChannel message.
let (channel0_tx, mut channel0_rx) = mpsc::channel(32);
let (channel1_tx, mut channel1_rx) = mpsc::channel(32);
let (channel2_tx, mut channel2_rx) = mpsc::channel(32);

// A Stream for outgoing messages.
let (mut outgoing_tx, outgoing_rx) = mpsc::channel::<OutgoingPacket<Bytes>>(32);

// Construct the multiplexer, giving it the OutgoingPacket stream, and a vector of incoming
// streams. The backlog controls how much of an internal buffer each WriteHalf (TcpSocket in this example) can have.
let outgoing_streams_backlog = 128;
let multiplexer = Multiplexer::new(
    outgoing_streams_backlog,
    outgoing_rx,
    vec![channel0_tx, channel1_tx, channel2_tx],
);

// Bind to a random port on localhost
let socket = TcpListener::bind("127.0.0.1:0").await?;

let local_addr = socket.local_addr()?;

// Use the HalvesStream utility struct to map the stream of new sockets.
// It will use LengthDelimitedCodec with 2 bytes as the packet size.
let halves = HalvesStream::new(socket, 2);

// Control channel for shutting down the multiplexer
let (control_write, control_read) = mpsc::unbounded_channel();
let mp_joinhandle = tokio::task::spawn(multiplexer.run(halves, control_read));

// Make a test connection:
let mut client = tokio::net::TcpStream::connect(local_addr).await?;

// Listen for the channel join announcement
let message = channel0_rx.recv().await.expect("Should have connected.");
matches::assert_matches!(message, IncomingPacket::StreamConnected(_));

// Send 'a message'
let mut data = Bytes::from("\x00\x09a message");
client.write_buf(&mut data).await?;
client.flush();

// Receive 'a message' on channel 0
let incoming_packet = channel0_rx.recv().await.unwrap();
assert_eq!(
    incoming_packet
        .value()
        .expect("should have a value")
        .as_ref()
        .unwrap(),
    &Bytes::from("a message")
);

// Move the client to channel 1
outgoing_tx
    .send(OutgoingPacket::ChangeChannel(vec![incoming_packet.id()], 1))
    .await?;

// Listen for the channel join announcement
let message = channel1_rx.recv().await.expect("Should have connected.");
matches::assert_matches!(message, IncomingPacket::StreamConnected(_));

// Send 'a message' again, on channel 1 this time.
let mut data = Bytes::from("\x00\x09a message");
client.write_buf(&mut data).await?;
client.flush();

// Receive 'a message' on channel 1
let incoming_packet = channel1_rx.recv().await.unwrap();
assert_eq!(
    incoming_packet
        .value()
        .expect("should have a value")
        .as_ref()
        .unwrap(),
    &Bytes::from("a message")
);

// Move the client to channel 2
outgoing_tx
    .send(OutgoingPacket::ChangeChannel(vec![incoming_packet.id()], 2))
    .await?;

// Listen for the channel join announcement
let message = channel2_rx.recv().await.expect("Should have connected.");
matches::assert_matches!(message, IncomingPacket::StreamConnected(_));

// Send 'a message' again, on channel 2 this time.
let mut data = Bytes::from("\x00\x09a message");
client.write_buf(&mut data).await?;
client.flush();

// Receive 'a message' on channel 2
let incoming_packet = channel2_rx.recv().await.unwrap();
assert_eq!(
    incoming_packet
        .value()
        .expect("should have a value")
        .as_ref()
        .unwrap(),
    &Bytes::from("a message")
);

// Tell multiplexer to shut down
control_write.send(ControlMessage::Shutdown)?;

mp_joinhandle.await.unwrap();
# Ok::<_, Box<dyn Error>>(())
# });
# Ok(())
# }
```
*/
mod error;
mod halt;
mod halves_stream;
mod id_gen;
mod multiplexer;
mod multiplexer_senders;
mod packets;
mod send_all_own;
mod sender;
mod stream_mover;

use futures::prelude::*;

pub use error::*;
use halt::*;
pub use halves_stream::*;
pub use id_gen::*;
pub use multiplexer::*;
use multiplexer_senders::*;
pub use packets::*;
use send_all_own::*;
use sender::*;
use stream_mover::*;

type StreamId = usize;
type ChannelId = usize;

/// Container for an incoming stream's Read and Write halves.
#[derive(Debug)]
pub struct IncomingStream<ReadSt, WriteSi>
where
    ReadSt: Stream + Unpin,
    ReadSt::Item: std::fmt::Debug,
{
    /// Channel that the stream should be placed in.
    channel: ChannelId,

    /// Write half of a connection.
    write_sink: WriteSi,

    /// Read half of a connection.
    read_stream: ReadSt,
}

impl<ReadSt, WriteSi> IncomingStream<ReadSt, WriteSi>
where
    ReadSt: Stream + Unpin,
    ReadSt::Item: std::fmt::Debug,
{
    /// Creates a new IncomingStream
    pub fn new(channel: ChannelId, write_sink: WriteSi, read_stream: ReadSt) -> Self {
        Self {
            channel,
            write_sink,
            read_stream,
        }
    }
}

/// To control the multiplexer, `ControlMessage` can be sent to the `control` channel passed into
/// `Multiplexer.run()`
#[derive(Copy, Clone, PartialEq, Debug)]
pub enum ControlMessage {
    /// Shut down the `Multiplexer`
    Shutdown,
}

#[cfg(test)]
mod tests {
    use super::*;

    #[allow(dead_code)]
    pub(crate) fn init_logging() {
        use tracing_subscriber::FmtSubscriber;

        let subscriber = FmtSubscriber::builder()
            .with_max_level(tracing::Level::TRACE)
            .finish();
        tracing::subscriber::set_global_default(subscriber)
            .expect("setting default subscriber failed");
    }

    pub(crate) fn sender_reader<St, Si>(sink: Si, stream: St) -> (Sender<Si>, HaltAsyncRead<St>)
    where
        St: Stream + Unpin,
        Si: Unpin,
    {
        // Wrap the reader so that it can be retrieved
        let (halt, reader) = HaltRead::wrap(stream);

        // Give the Sender the other end of the ejection channel
        let sender = Sender::new(sink, halt);

        (sender, reader)
    }
}