1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
//! This crate provides a mechanism for interrupting a `Stream`.
//!
//! Any stream can be wrapped in a [`Valved`], which enables it to be remotely terminated through
//! an associated [`ValveHandle`]. This can be useful to implement graceful shutdown on "infinite"
//! streams like a `TcpListener`. Once [`ValveHandle::close`] is called on the handle for a given
//! stream's [`Valved`], the stream will yield `None` to indicate that it has terminated.
//!
//! ```
//! # extern crate stream_cancel;
//! extern crate tokio;
//!
//! use stream_cancel::Valved;
//! use tokio::prelude::*;
//! use std::thread;
//!
//! let listener = tokio::net::TcpListener::bind(&"0.0.0.0:0".parse().unwrap()).unwrap();
//! let (exit, incoming) = Valved::new(listener.incoming());
//!
//! let server = thread::spawn(move || {
//!     // start a tokio echo server
//!     tokio::run(
//!         incoming
//!             .map_err(|e| eprintln!("accept failed = {:?}", e))
//!             .for_each(|sock| {
//!                 let (reader, writer) = sock.split();
//!                 tokio::spawn(
//!                     tokio::io::copy(reader, writer)
//!                         .map(|amt| println!("wrote {:?} bytes", amt))
//!                         .map_err(|err| eprintln!("IO error {:?}", err)),
//!                 )
//!             }),
//!     )
//! });
//!
//! // the server thread will normally never exit, since more connections
//! // can always arrive. however, with a Valved, we can turn off the
//! // stream of incoming connections to initiate a graceful shutdown
//! exit.close();
//! server.join().unwrap();
//! ```
//!
//! You can share the same [`ValveHandle`] between multiple streams by first creating a [`Valve`],
//! and then wrapping multiple streams using [`Valve::Wrap`]:
//!
//! ```
//! # extern crate stream_cancel;
//! extern crate tokio;
//!
//! use stream_cancel::Valve;
//! use tokio::prelude::*;
//!
//! let (exit, valve) = Valve::new();
//! let listener1 = tokio::net::TcpListener::bind(&"0.0.0.0:0".parse().unwrap()).unwrap();
//! let listener2 = tokio::net::TcpListener::bind(&"0.0.0.0:0".parse().unwrap()).unwrap();
//! let incoming1 = valve.wrap(listener1.incoming());
//! let incoming2 = valve.wrap(listener2.incoming());
//!
//! let mut rt = tokio::runtime::Runtime::new().unwrap();
//! rt.spawn(
//!     incoming1
//!         .select(incoming2)
//!         .map_err(|e| eprintln!("accept failed = {:?}", e))
//!         .for_each(|sock| {
//!             let (reader, writer) = sock.split();
//!             tokio::spawn(
//!                 tokio::io::copy(reader, writer)
//!                     .map(|amt| println!("wrote {:?} bytes", amt))
//!                     .map_err(|err| eprintln!("IO error {:?}", err)),
//!             )
//!         }),
//! );
//!
//! // the runtime will not become idle until both incoming1 and incoming2 have stopped (due to
//! // the select). this checks that they are indeed both interrupted when the valve is closed.
//! exit.close();
//! rt.shutdown_on_idle().wait().unwrap();
//! ```

#![deny(missing_docs)]

extern crate futures;

#[cfg(test)]
extern crate tokio;

use futures::{future::Shared, sync::oneshot, Async, Future, Poll, Stream};

/// A `Valved` is wrapper around a `Stream` that enables the stream to be turned off remotely to
/// initiate a graceful shutdown. When a new `Valved` is created with [`Valved::new`], a handle to
/// that `Valved` is also produced; when [`ValveHandle::close`] is called on that handle, the
/// wrapped stream will immediately yield `None` to indicate that it has completed.
#[derive(Clone, Debug)]
pub struct Valved<S> {
    stream: S,
    valve: Shared<oneshot::Receiver<()>>,
    free: bool,
}

impl<S> Valved<S> {
    /// Make the given stream cancellable.
    ///
    /// To cancel the stream, call [`ValveHandle::close`] on the returned handle.
    pub fn new(stream: S) -> (ValveHandle, Self) {
        let (vh, v) = Valve::new();
        (vh, v.wrap(stream))
    }
}

/// A `Valve` is associated with a [`ValveHandle`], and can be used to wrap one or more
/// asynchronous streams. All streams wrapped by a given `Valve` (or its clones) will be
/// interrupted when [`ValveHandle::close`] is called on the valve's associated handle.
#[derive(Clone, Debug)]
pub struct Valve(Shared<oneshot::Receiver<()>>);

impl Valve {
    /// Make a new `Valve` and an associated [`ValveHandle`].
    pub fn new() -> (ValveHandle, Self) {
        let (tx, rx) = oneshot::channel();
        (ValveHandle(tx), Valve(rx.shared()))
    }

    /// Wrap the given `stream` with this `Valve`.
    ///
    /// When [`ValveHandle::close`] is called on the handle associated with this valve, the given
    /// stream will immediately yield `None`.
    pub fn wrap<S>(&self, stream: S) -> Valved<S> {
        Valved {
            stream,
            valve: self.0.clone(),
            free: false,
        }
    }
}

/// A handle to a wrapped stream.
///
/// If the `ValveHandle` is dropped without calling `close`, any streams wrapped by associated
/// valves will *not* be interrupted.
#[derive(Debug)]
pub struct ValveHandle(oneshot::Sender<()>);

impl ValveHandle {
    /// Close the valve for the associated stream, and make it immediately yield `None`.
    pub fn close(self) {
        self.0.send(()).unwrap();
    }
}

impl<S> Stream for Valved<S>
where
    S: Stream,
{
    type Item = S::Item;
    type Error = S::Error;

    fn poll(&mut self) -> Poll<Option<Self::Item>, Self::Error> {
        if !self.free {
            match self.valve.poll() {
                Ok(Async::Ready(_)) => {
                    // valve closed -- terminate stream
                    return Ok(Async::Ready(None));
                }
                Err(_) => {
                    // valve handle was dropped -- let the stream go forever
                    self.free = true;
                }
                Ok(Async::NotReady) => {}
            }
        }

        self.stream.poll()
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use tokio::prelude::*;

    #[test]
    fn tokio_run() {
        use std::thread;

        let listener = tokio::net::TcpListener::bind(&"0.0.0.0:0".parse().unwrap()).unwrap();
        let (exit, incoming) = Valved::new(listener.incoming());

        let server = thread::spawn(move || {
            // start a tokio echo server
            tokio::run(
                incoming
                    .map_err(|e| eprintln!("accept failed = {:?}", e))
                    .for_each(|sock| {
                        let (reader, writer) = sock.split();
                        tokio::spawn(
                            tokio::io::copy(reader, writer)
                                .map(|amt| println!("wrote {:?} bytes", amt))
                                .map_err(|err| eprintln!("IO error {:?}", err)),
                        )
                    }),
            )
        });

        // the server thread will normally never exit, since more connections
        // can always arrive. however, with a Valved, we can turn off the
        // stream of incoming connections to initiate a graceful shutdown
        exit.close();
        server.join().unwrap();
    }

    #[test]
    fn tokio_rt_on_idle() {
        let listener = tokio::net::TcpListener::bind(&"0.0.0.0:0".parse().unwrap()).unwrap();
        let (exit, incoming) = Valved::new(listener.incoming());

        let mut rt = tokio::runtime::Runtime::new().unwrap();
        rt.spawn(
            incoming
                .map_err(|e| eprintln!("accept failed = {:?}", e))
                .for_each(|sock| {
                    let (reader, writer) = sock.split();
                    tokio::spawn(
                        tokio::io::copy(reader, writer)
                            .map(|amt| println!("wrote {:?} bytes", amt))
                            .map_err(|err| eprintln!("IO error {:?}", err)),
                    )
                }),
        );

        exit.close();
        rt.shutdown_on_idle().wait().unwrap();
    }

    #[test]
    fn multi_interrupt() {
        let (exit, valve) = Valve::new();
        let listener1 = tokio::net::TcpListener::bind(&"0.0.0.0:0".parse().unwrap()).unwrap();
        let listener2 = tokio::net::TcpListener::bind(&"0.0.0.0:0".parse().unwrap()).unwrap();
        let incoming1 = valve.wrap(listener1.incoming());
        let incoming2 = valve.wrap(listener2.incoming());

        let mut rt = tokio::runtime::Runtime::new().unwrap();
        rt.spawn(
            incoming1
                .select(incoming2)
                .map_err(|e| eprintln!("accept failed = {:?}", e))
                .for_each(|sock| {
                    let (reader, writer) = sock.split();
                    tokio::spawn(
                        tokio::io::copy(reader, writer)
                            .map(|amt| println!("wrote {:?} bytes", amt))
                            .map_err(|err| eprintln!("IO error {:?}", err)),
                    )
                }),
        );

        // the runtime will not become idle until both incoming1 and incoming2 have stopped (due to
        // the select). this checks that they are indeed both interrupted when the valve is closed.
        exit.close();
        rt.shutdown_on_idle().wait().unwrap();
    }
}