1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
//!
//! LCD interface using the Flexible Memory Controller (FMC) / Flexible Static Memory Controller (FSMC)
//!
//! This module is only available if the `fsmc_lcd` feature is enabled and the target
//! microcontroller has an FMC or FSMC
//!
//! This driver is compatible with many LCD driver chips that support the Intel 8080 interface
//! (also called Display Bus Interface (DBI) type B) with a 16-bit data bus.
//!
//! Here are some examples of compatible LCD drivers:
//! * Sitronix ST7735S
//! * Sitronix ST7789VI
//! * Ilitek ILI9327
//! * Ilitek ILI9320
//! * Himax HX8357-B
//!
//! Higher-level driver code can add support for specific LCD driver
//! integrated circuits.
//!
//! For an overview of how this interface works, see [application note AN2790](https://www.st.com/content/ccc/resource/technical/document/application_note/85/ad/ef/0f/a3/a6/49/9a/CD00201397.pdf/files/CD00201397.pdf/jcr:content/translations/en.CD00201397.pdf).
//!
//! # Pins
//!
//! To interface with 1-4 LCDs, you will need:
//! * 16 data pins (0 through 15), shared among all the LCDs
//! * One NEx (chip select) pin per LCD (up to 4)
//! * One Ax (address) pin, shared among all the LCDs. This pin is used to select data or command
//!   mode.
//!     * You can also supply up to 4 address pins, but they will always have the same output.
//!     * Caution: Due to hardware limitations, address line A25 cannot be used.
//! * One NOE (read enable) pin, shared among all the LCDs
//! * One NWE (write enable) pin, shared among all the LCDs
//!
//! # Timing
//!
//! Because the correct timing depends on the specific LCD controller and the wiring between the
//! microcontroller and LCD controller, this driver does not try to calculate the correct
//! timing settings. Instead, it exposes the access modes and timing options that the STM32F4
//! hardware supports.
//!
//! The default access mode is mode C. For an example timing diagram, refer to reference manual
//! [RM0090](https://www.st.com/resource/en/reference_manual/dm00031020.pdf),
//! figures 443 and 444 (on page 1562), or your microcontroller reference manual.
//!
//! Access modes A, B, and D are also supported.
//!
//! # Basic operation
//!
//! 1. Create an `LcdPins` object containing the pins used to communicate with the LCD
//!
//! 2. Create default `Timing` objects for the write and read timing
//!     
//!     a. (Optional) Adjust the timing to make read and write operations faster, within the limits
//!        of the wiring and LCD controller
//!
//! 3. Pass the FSMC peripheral object, pins, read timing, and write timing to `FsmcLcd::new`.
//!    This function will return an `FsmcLcd` and one or more `Lcd` objects.
//!
//! 4. Use the returned `Lcd` object(s) to configure the controller(s) and display graphics

mod display_interface_impl;
mod pins;
mod sealed;
mod timing;

use core::marker::PhantomData;

pub use self::pins::{
    AddressPins, ChipSelect1, ChipSelect2, ChipSelect3, ChipSelect4, ChipSelectPins, DataPins,
    LcdPins, PinAddress, PinChipSelect1, PinChipSelect2, PinChipSelect3, PinChipSelect4, PinD0,
    PinD1, PinD10, PinD11, PinD12, PinD13, PinD14, PinD15, PinD2, PinD3, PinD4, PinD5, PinD6,
    PinD7, PinD8, PinD9, PinReadEnable, PinWriteEnable, Pins,
};
pub use self::timing::{AccessMode, Timing};

use crate::pac::RCC;
use crate::rcc::{Enable, Reset};

// Use the FMC or FSMC, whichever is available, and treat it like an FSMC
#[cfg(feature = "fmc")]
use crate::pac::fmc as fsmc;
#[cfg(feature = "fsmc")]
use crate::pac::fsmc;
#[cfg(feature = "fmc")]
use crate::pac::FMC as FSMC;
#[cfg(feature = "fsmc")]
use crate::pac::FSMC;

/// A sub-bank of bank 1, with its own chip select output
pub trait SubBank: sealed::SealedSubBank {}
/// Sub-bank 1
pub struct SubBank1(());
impl sealed::SealedSubBank for SubBank1 {
    const BASE_ADDRESS: usize = 0x6000_0000;
}
impl SubBank for SubBank1 {}
/// Sub-bank 2
pub struct SubBank2(());
impl sealed::SealedSubBank for SubBank2 {
    const BASE_ADDRESS: usize = 0x6400_0000;
}
impl SubBank for SubBank2 {}
/// Sub-bank 3
pub struct SubBank3(());
impl sealed::SealedSubBank for SubBank3 {
    const BASE_ADDRESS: usize = 0x6800_0000;
}
impl SubBank for SubBank3 {}
/// Sub-bank 4
pub struct SubBank4(());
impl sealed::SealedSubBank for SubBank4 {
    const BASE_ADDRESS: usize = 0x6c00_0000;
}
impl SubBank for SubBank4 {}

/// An FMC or FSMC configured as an LCD interface
pub struct FsmcLcd<PINS> {
    pins: PINS,
    fsmc: FSMC,
}

impl<PINS> FsmcLcd<PINS>
where
    PINS: Pins,
{
    /// Configures the FSMC/FMC to interface with an LCD using the provided pins
    ///
    /// The same timings will be used for all connected LCDs.
    ///
    /// The return type includes an `FsmcLcd` and either an `Lcd` or a tuple of up to four `Lcd`s,
    /// depending on the pins given.
    ///
    /// The returned `FsmcLcd` can be used later to release the FSMC and pins for other uses,
    /// or it can be ignored.
    ///
    /// # Return type examples
    ///
    /// ## One enable/chip select pin
    ///
    /// If you pass an `LcdPins` object with the `enable` field containing a single `ChipSelect1`
    /// object with a pin, this function will return an `FsmcLcd` and an `Lcd<SubBank1>`.
    ///
    /// ### Multiple enable/chip select pins
    ///
    /// If you pass an `LcdPins` object with the `enable` field containing a tuple of 2-4
    /// `ChipSelectX` objects, this function will return an `FsmcLcd` and a tuple of `Lcd<_>`
    /// objects. Each `Lcd` is associated with one chip select pin, and can be controlled
    /// independently.
    ///
    /// # Examples
    ///
    /// The `stm32f4xx-hal` repository has a `st7789-lcd` example that draws graphics on an LCD
    /// and runs on the STM32F412G-DISCO board.
    ///
    /// Up to four LCDs can be controlled separately using four chip select pins
    ///
    /// ```ignore
    /// let lcd_pins = LcdPins {
    ///     data: (
    ///         gpiod.pd14.into_alternate_af12(),
    ///         gpiod.pd15.into_alternate_af12(),
    ///         gpiod.pd0.into_alternate_af12(),
    ///         gpiod.pd1.into_alternate_af12(),
    ///         gpioe.pe7.into_alternate_af12(),
    ///         gpioe.pe8.into_alternate_af12(),
    ///         gpioe.pe9.into_alternate_af12(),
    ///         gpioe.pe10.into_alternate_af12(),
    ///         gpioe.pe11.into_alternate_af12(),
    ///         gpioe.pe12.into_alternate_af12(),
    ///         gpioe.pe13.into_alternate_af12(),
    ///         gpioe.pe14.into_alternate_af12(),
    ///         gpioe.pe15.into_alternate_af12(),
    ///         gpiod.pd8.into_alternate_af12(),
    ///         gpiod.pd9.into_alternate_af12(),
    ///         gpiod.pd10.into_alternate_af12(),
    ///     ),
    ///     // Four address pins, one for each LCD
    ///     // All of them will have the same output
    ///     address: (
    ///         gpiof.pf0.into_alternate_af12(),
    ///         gpioe.pe2.into_alternate_af12(),
    ///         gpioe.pe3.into_alternate_af12(),
    ///         gpiof.pf14.into_alternate_af12(),
    ///     ),
    ///     read_enable: gpiod.pd4.into_alternate_af12(),
    ///     write_enable: gpiod.pd5.into_alternate_af12(),
    ///     // Four chip select pins, one for each LCD, controlled independently
    ///     chip_select: (
    ///         ChipSelect1(gpiod.pd7.into_alternate_af12()),
    ///         ChipSelect2(gpiog.pg9.into_alternate_af12()),
    ///         ChipSelect3(gpiog.pg10.into_alternate_af12()),
    ///         ChipSelect4(gpiog.pg12.into_alternate_af12()),
    ///     ),
    /// };
    ///
    /// let (_fsmc, mut lcds) = FsmcLcd::new(dp.FSMC, lcd_pins, &Timing::default(), &Timing::default());
    /// // lcds is a tuple of four `Lcd` objects. Each one can be accessed independently.
    /// // This is just a basic example of some things that can be done.
    /// lcds.0.write_command(37);
    /// lcds.1.write_command(38);
    /// lcds.2.write_command(39);
    /// lcds.3.write_command(40);
    /// ```
    pub fn new(
        fsmc: FSMC,
        pins: PINS,
        read_timing: &Timing,
        write_timing: &Timing,
    ) -> (Self, PINS::Lcds) {
        use self::sealed::Conjure;
        unsafe {
            //NOTE(unsafe) this reference will only be used for atomic writes with no side effects
            let rcc = &(*RCC::ptr());
            // Enable the FSMC/FMC peripheral
            FSMC::enable(rcc);
            FSMC::reset(rcc);
        }

        // Configure memory type and basic interface settings
        // The reference manuals are sometimes unclear on the distinction between banks
        // and sub-banks of bank 1. This driver uses addresses in the different sub-banks of
        // bank 1. The configuration registers for "bank x" (like FMC_BCRx) actually refer to
        // sub-banks, not banks. We need to configure and enable all four of them.
        configure_bcr1(&fsmc.bcr1);
        configure_bcr(&fsmc.bcr2);
        configure_bcr(&fsmc.bcr3);
        configure_bcr(&fsmc.bcr4);
        configure_btr(&fsmc.btr1, read_timing);
        configure_btr(&fsmc.btr2, read_timing);
        configure_btr(&fsmc.btr3, read_timing);
        configure_btr(&fsmc.btr4, read_timing);
        configure_bwtr(&fsmc.bwtr1, write_timing);
        configure_bwtr(&fsmc.bwtr2, write_timing);
        configure_bwtr(&fsmc.bwtr3, write_timing);
        configure_bwtr(&fsmc.bwtr4, write_timing);

        (FsmcLcd { pins, fsmc }, PINS::Lcds::conjure())
    }

    /// Reunites this FsmcLcd and all its associated LCDs, and returns the FSMC and pins for other
    /// uses
    ///
    /// This function also resets and disables the FSMC.
    pub fn release(self, _lcds: PINS::Lcds) -> (FSMC, PINS) {
        unsafe {
            //NOTE(unsafe) this reference will only be used for atomic writes with no side effects
            let rcc = &(*RCC::ptr());
            // All STM32F4 models with an FSMC or FMC use bit 0 in AHB3ENR and AHB3RSTR.
            // Reset FSMC/FMC
            FSMC::reset(rcc);
            // Disable the FSMC/FMC peripheral
            FSMC::disable(rcc);
        }

        (self.fsmc, self.pins)
    }
}

/// Configures an SRAM/NOR-Flash chip-select control register for LCD interface use
fn configure_bcr1(bcr: &fsmc::BCR1) {
    bcr.write(|w| {
        w
            // The write fifo and WFDIS bit are missing from some models.
            // Where present, the FIFO is enabled by default.
            // ------------
            // Disable synchronous writes
            .cburstrw()
            .disabled()
            // Don't split burst transactions (doesn't matter for LCD mode)
            .cpsize()
            .no_burst_split()
            // Ignore wait signal (asynchronous mode)
            .asyncwait()
            .disabled()
            // Enable extended mode, for different read and write timings
            .extmod()
            .enabled()
            // Ignore wait signal (synchronous mode)
            .waiten()
            .disabled()
            // Allow write operations
            .wren()
            .enabled()
            // Default wait timing
            .waitcfg()
            .before_wait_state()
            // Default wait polarity
            .waitpol()
            .active_low()
            // Disable burst reads
            .bursten()
            .disabled()
            // Enable NOR flash operations
            .faccen()
            .enabled()
            // 16-bit bus width
            .mwid()
            .bits16()
            // NOR flash mode (compatible with LCD controllers)
            .mtyp()
            .flash()
            // Address and data not multiplexed
            .muxen()
            .disabled()
            // Enable this memory bank
            .mbken()
            .enabled()
    })
}

/// Configures an SRAM/NOR-Flash chip-select control register for LCD interface use
///
/// This is equivalent to `configure_bcr1`, but without the `WFDIS` and `CCLKEN` bits that are
/// present in BCR1 only.
fn configure_bcr(bcr: &fsmc::BCR) {
    bcr.write(|w| {
        w
            // Disable synchronous writes
            .cburstrw()
            .disabled()
            // Don't split burst transactions (doesn't matter for LCD mode)
            .cpsize()
            .no_burst_split()
            // Ignore wait signal (asynchronous mode)
            .asyncwait()
            .disabled()
            // Enable extended mode, for different read and write timings
            .extmod()
            .enabled()
            // Ignore wait signal (synchronous mode)
            .waiten()
            .disabled()
            // Allow write operations
            .wren()
            .enabled()
            // Default wait timing
            .waitcfg()
            .before_wait_state()
            // Default wait polarity
            .waitpol()
            .active_low()
            // Disable burst reads
            .bursten()
            .disabled()
            // Enable NOR flash operations
            .faccen()
            .enabled()
            // 16-bit bus width
            .mwid()
            .bits16()
            // NOR flash mode (compatible with LCD controllers)
            .mtyp()
            .flash()
            // Address and data not multiplexed
            .muxen()
            .disabled()
            // Enable this memory bank
            .mbken()
            .enabled()
    })
}

/// Configures a read timing register
fn configure_btr(btr: &fsmc::BTR, read_timing: &Timing) {
    btr.write(|w| unsafe {
        w.accmod()
            .variant(read_timing.access_mode.as_read_variant())
            .busturn()
            .bits(read_timing.bus_turnaround)
            .datast()
            .bits(read_timing.data)
            .addhld()
            .bits(read_timing.address_hold)
            .addset()
            .bits(read_timing.address_setup)
    })
}
/// Configures a write timing register
fn configure_bwtr(bwtr: &fsmc::BWTR, write_timing: &Timing) {
    bwtr.write(|w| unsafe {
        w.accmod()
            .variant(write_timing.access_mode.as_write_variant())
            .busturn()
            .bits(write_timing.bus_turnaround)
            .datast()
            .bits(write_timing.data)
            .addhld()
            .bits(write_timing.address_hold)
            .addset()
            .bits(write_timing.address_setup)
    })
}

/// An interface to an LCD controller using one sub-bank
///
/// This struct provides low-level read and write commands that can be used to implement
/// drivers for LCD controllers. Each function corresponds to exactly one transaction on the bus.
pub struct Lcd<S> {
    /// Phantom S
    ///
    /// S determines the chip select signal to use, and the addresses used with that signal.
    _sub_bank: PhantomData<S>,
}

impl<S> Lcd<S>
where
    S: SubBank,
{
    /// Writes a value with the data/command (address) signals set high
    pub fn write_data(&mut self, value: u16) {
        unsafe {
            core::ptr::write_volatile(S::DATA_ADDRESS as *mut u16, value);
        }
    }

    /// Writes a value with the data/command (address) signals set low
    pub fn write_command(&mut self, value: u16) {
        unsafe {
            core::ptr::write_volatile(S::COMMAND_ADDRESS as *mut u16, value);
        }
    }

    /// Reads a value with the data/command (address) signals set high
    pub fn read_data(&self) -> u16 {
        unsafe { core::ptr::read_volatile(S::DATA_ADDRESS as *const u16) }
    }

    /// Reads a value with the data/command (address) signals set low
    pub fn read_command(&self) -> u16 {
        unsafe { core::ptr::read_volatile(S::COMMAND_ADDRESS as *const u16) }
    }
}