1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
//! Serial Peripheral Interface (SPI) bus


use core::ptr;

use crate::hal::spi::FullDuplex;
pub use crate::hal::spi::{Mode, Phase, Polarity};
use crate::pac::{
    spi1::cr2::{DS_A, FRXTH_A},
    SPI1, SPI2, SPI3,
};
use crate::stm32::spi1;

use crate::gpio::gpioa::{PA5, PA6, PA7};
#[cfg(any(
    feature = "stm32f301",
    feature = "stm32f302",
    feature = "stm32f303",
    feature = "stm32f318",
    feature = "stm32f328",
    feature = "stm32f334",
    feature = "stm32f358",
    feature = "stm32f398"
))]
use crate::gpio::gpiob::PB13;
use crate::gpio::gpiob::{PB14, PB15, PB5};
use crate::gpio::gpioc::{PC10, PC11, PC12};
use crate::gpio::{AF5, AF6};
use crate::rcc::Clocks;
#[cfg(any(
    feature = "stm32f301",
    feature = "stm32f302",
    feature = "stm32f303",
    feature = "stm32f318",
    feature = "stm32f328",
    feature = "stm32f358",
    feature = "stm32f373",
    feature = "stm32f378",
    feature = "stm32f398"
))]
use crate::rcc::APB1;
#[cfg(any(
    feature = "stm32f302",
    feature = "stm32f303",
    feature = "stm32f328",
    feature = "stm32f334",
    feature = "stm32f358",
    feature = "stm32f373",
    feature = "stm32f378",
    feature = "stm32f398"
))]
use crate::rcc::APB2;
use crate::time::Hertz;
use core::marker::PhantomData;

/// SPI error

#[derive(Debug)]
#[non_exhaustive]
pub enum Error {
    /// Overrun occurred

    Overrun,
    /// Mode fault occurred

    ModeFault,
    /// CRC error

    Crc,
}

// FIXME these should be "closed" traits

/// SCK pin -- DO NOT IMPLEMENT THIS TRAIT

pub unsafe trait SckPin<SPI> {}

/// MISO pin -- DO NOT IMPLEMENT THIS TRAIT

pub unsafe trait MisoPin<SPI> {}

/// MOSI pin -- DO NOT IMPLEMENT THIS TRAIT

pub unsafe trait MosiPin<SPI> {}

unsafe impl SckPin<SPI1> for PA5<AF5> {}
// unsafe impl SckPin<SPI1> for PB3<AF5> {}


#[cfg(any(
    feature = "stm32f301",
    feature = "stm32f302",
    feature = "stm32f303",
    feature = "stm32f318",
    feature = "stm32f328",
    feature = "stm32f334",
    feature = "stm32f358",
    feature = "stm32f398"
))]
unsafe impl SckPin<SPI2> for PB13<AF5> {}

// unsafe impl SckPin<SPI3> for PB3<AF6> {}

unsafe impl SckPin<SPI3> for PC10<AF6> {}

unsafe impl MisoPin<SPI1> for PA6<AF5> {}
// unsafe impl MisoPin<SPI1> for PB4<AF5> {}


unsafe impl MisoPin<SPI2> for PB14<AF5> {}

// unsafe impl MisoPin<SPI3> for PB4<AF6> {}

unsafe impl MisoPin<SPI3> for PC11<AF6> {}

unsafe impl MosiPin<SPI1> for PA7<AF5> {}
unsafe impl MosiPin<SPI1> for PB5<AF5> {}

unsafe impl MosiPin<SPI2> for PB15<AF5> {}

unsafe impl MosiPin<SPI3> for PB5<AF6> {}
unsafe impl MosiPin<SPI3> for PC12<AF6> {}

pub trait Word {
    fn register_config() -> (FRXTH_A, DS_A);
}

impl Word for u8 {
    fn register_config() -> (FRXTH_A, DS_A) {
        (FRXTH_A::QUARTER, DS_A::EIGHTBIT)
    }
}

impl Word for u16 {
    fn register_config() -> (FRXTH_A, DS_A) {
        (FRXTH_A::HALF, DS_A::SIXTEENBIT)
    }
}

/// SPI peripheral operating in full duplex master mode

pub struct Spi<SPI, PINS, WORD = u8> {
    spi: SPI,
    pins: PINS,
    _word: PhantomData<WORD>,
}

macro_rules! hal {
    ($($SPIX:ident: ($spiX:ident, $APBX:ident, $spiXen:ident, $spiXrst:ident, $pclkX:ident),)+) => {
        $(
            impl<SCK, MISO, MOSI, WORD> Spi<$SPIX, (SCK, MISO, MOSI), WORD> {
                /// Configures the SPI peripheral to operate in full duplex master mode

                pub fn $spiX<F>(
                    spi: $SPIX,
                    pins: (SCK, MISO, MOSI),
                    mode: Mode,
                    freq: F,
                    clocks: Clocks,
                    apb2: &mut $APBX,
                ) -> Self
                where
                    F: Into<Hertz>,
                    SCK: SckPin<$SPIX>,
                    MISO: MisoPin<$SPIX>,
                    MOSI: MosiPin<$SPIX>,
                    WORD: Word,
                {
                    // enable or reset $SPIX

                    apb2.enr().modify(|_, w| w.$spiXen().enabled());
                    apb2.rstr().modify(|_, w| w.$spiXrst().reset());
                    apb2.rstr().modify(|_, w| w.$spiXrst().clear_bit());

                    let (frxth, ds) = WORD::register_config();
                    spi.cr2.write(|w| {
                        w.frxth().variant(frxth);
                        w.ds().variant(ds);
                        // Slave Select output disabled

                        w.ssoe().disabled()
                    });

                    // CPHA: phase

                    // CPOL: polarity

                    // MSTR: master mode

                    // BR: 1 MHz

                    // SPE: SPI disabled

                    // LSBFIRST: MSB first

                    // SSM: enable software slave management (NSS pin free for other uses)

                    // SSI: set nss high = master mode

                    // CRCEN: hardware CRC calculation disabled

                    // BIDIMODE: 2 line unidirectional (full duplex)

                    spi.cr1.write(|w| {
                        w.mstr().master();

                        match mode.phase {
                            Phase::CaptureOnFirstTransition => w.cpha().first_edge(),
                            Phase::CaptureOnSecondTransition => w.cpha().second_edge(),
                        };

                        match mode.polarity {
                            Polarity::IdleLow => w.cpol().idle_low(),
                            Polarity::IdleHigh => w.cpol().idle_high(),
                        };

                        w.br().variant(Self::compute_baud_rate(clocks.$pclkX(), freq.into()));

                        w.spe()
                            .enabled()
                            .lsbfirst()
                            .msbfirst()
                            .ssi()
                            .slave_not_selected()
                            .ssm()
                            .enabled()
                            .crcen()
                            .disabled()
                            .bidimode()
                            .unidirectional()
                    });

                    Spi { spi, pins, _word: PhantomData }
                }

                /// Releases the SPI peripheral and associated pins

                pub fn free(self) -> ($SPIX, (SCK, MISO, MOSI)) {
                    (self.spi, self.pins)
                }

                /// Change the baud rate of the SPI

                pub fn reclock<F>(&mut self, freq: F, clocks: Clocks)
                    where F: Into<Hertz>
                {
                    self.spi.cr1.modify(|_, w| w.spe().disabled());
                    self.spi.cr1.modify(|_, w| {
                        w.br().variant(Self::compute_baud_rate(clocks.$pclkX(), freq.into()));
                        w.spe().enabled()
                    });
                }

                fn compute_baud_rate(clocks: Hertz, freq: Hertz) -> spi1::cr1::BR_A {
                    use spi1::cr1::BR_A;
                    match clocks.0 / freq.0 {
                        0 => unreachable!(),
                        1..=2 => BR_A::DIV2,
                        3..=5 => BR_A::DIV4,
                        6..=11 => BR_A::DIV8,
                        12..=23 => BR_A::DIV16,
                        24..=39 => BR_A::DIV32,
                        40..=95 => BR_A::DIV64,
                        96..=191 => BR_A::DIV128,
                        _ => BR_A::DIV256,
                    }
                }


            }

            impl<PINS, WORD> FullDuplex<WORD> for Spi<$SPIX, PINS, WORD> {
                type Error = Error;

                fn read(&mut self) -> nb::Result<WORD, Error> {
                    let sr = self.spi.sr.read();

                    Err(if sr.ovr().is_overrun() {
                        nb::Error::Other(Error::Overrun)
                    } else if sr.modf().is_fault() {
                        nb::Error::Other(Error::ModeFault)
                    } else if sr.crcerr().is_no_match() {
                        nb::Error::Other(Error::Crc)
                    } else if sr.rxne().is_not_empty() {
                        let read_ptr = &self.spi.dr as *const _ as *const WORD;
                        // NOTE(unsafe) read from register owned by this Spi struct

                        let value = unsafe { ptr::read_volatile(read_ptr) };
                        return Ok(value);
                    } else {
                        nb::Error::WouldBlock
                    })
                }

                fn send(&mut self, word: WORD) -> nb::Result<(), Error> {
                    let sr = self.spi.sr.read();

                    Err(if sr.ovr().is_overrun() {
                        nb::Error::Other(Error::Overrun)
                    } else if sr.modf().is_fault() {
                        nb::Error::Other(Error::ModeFault)
                    } else if sr.crcerr().is_no_match() {
                        nb::Error::Other(Error::Crc)
                    } else if sr.txe().is_empty() {
                        let write_ptr = &self.spi.dr as *const _ as *mut WORD;
                        // NOTE(unsafe) write to register owned by this Spi struct

                        unsafe { ptr::write_volatile(write_ptr, word) };
                        return Ok(());
                    } else {
                        nb::Error::WouldBlock
                    })
                }
            }

            impl<PINS, WORD> crate::hal::blocking::spi::transfer::Default<WORD> for Spi<$SPIX, PINS, WORD> {}
            impl<PINS, WORD> crate::hal::blocking::spi::write::Default<WORD> for Spi<$SPIX, PINS, WORD> {}
        )+
    }
}

#[cfg(feature = "stm32f334")]
hal! {
    SPI1: (spi1, APB2, spi1en, spi1rst, pclk2),
}

#[cfg(any(feature = "stm32f301", feature = "stm32f318"))]
hal! {
    SPI2: (spi2, APB1, spi2en, spi2rst, pclk1),
    SPI3: (spi3, APB1, spi3en, spi3rst, pclk1),
}

#[cfg(any(
    feature = "stm32f302",
    feature = "stm32f303",
    feature = "stm32f328",
    feature = "stm32f358",
    feature = "stm32f373",
    feature = "stm32f378",
    feature = "stm32f398"
))]
hal! {
    SPI1: (spi1, APB2, spi1en, spi1rst, pclk2),
    SPI2: (spi2, APB1, spi2en, spi2rst, pclk1),
    SPI3: (spi3, APB1, spi3en, spi3rst, pclk1),
}

// FIXME not working

// TODO measure if this actually faster than the default implementation

// impl ::hal::blocking::spi::Write<u8> for Spi {

//     type Error = Error;


//     fn write(&mut self, bytes: &[u8]) -> Result<(), Error> {

//         for byte in bytes {

//             'l: loop {

//                 let sr = self.spi.sr.read();


//                 // ignore overruns because we don't care about the incoming data

//                 // if sr.ovr().bit_is_set() {

//                 // Err(nb::Error::Other(Error::Overrun))

//                 // } else

//                 if sr.modf().bit_is_set() {

//                     return Err(Error::ModeFault);

//                 } else if sr.crcerr().bit_is_set() {

//                     return Err(Error::Crc);

//                 } else if sr.txe().bit_is_set() {

//                     // NOTE(write_volatile) see note above

//                     unsafe { ptr::write_volatile(&self.spi.dr as *const _ as *mut u8, *byte) }

//                     break 'l;

//                 } else {

//                     // try again

//                 }

//             }

//         }


//         // wait until the transmission of the last byte is done

//         while self.spi.sr.read().bsy().bit_is_set() {}


//         // clear OVR flag

//         unsafe {

//             ptr::read_volatile(&self.spi.dr as *const _ as *const u8);

//         }

//         self.spi.sr.read();


//         Ok(())

//     }

// }