1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
//! # Reset & Control Clock

use core::cmp;

use cast::u32;
use crate::pac::{rcc, RCC, PWR};

use crate::flash::ACR;
use crate::time::Hertz;

use crate::backup_domain::BackupDomain;


/// Extension trait that constrains the `RCC` peripheral
pub trait RccExt {
    /// Constrains the `RCC` peripheral so it plays nicely with the other abstractions
    fn constrain(self) -> Rcc;
}

impl RccExt for RCC {
    fn constrain(self) -> Rcc {
        Rcc {
            ahb: AHB { _0: () },
            apb1: APB1 { _0: () },
            apb2: APB2 { _0: () },
            cfgr: CFGR {
                hse: None,
                hclk: None,
                pclk1: None,
                pclk2: None,
                sysclk: None,
                adcclk: None,
            },
            bkp: BKP { _0: () },
        }
    }
}

/// Constrained RCC peripheral
pub struct Rcc {
    /// AMBA High-performance Bus (AHB) registers
    pub ahb: AHB,
    /// Advanced Peripheral Bus 1 (APB1) registers
    pub apb1: APB1,
    /// Advanced Peripheral Bus 2 (APB2) registers
    pub apb2: APB2,
    pub cfgr: CFGR,
    pub bkp: BKP,
}

/// AMBA High-performance Bus (AHB) registers
pub struct AHB {
    _0: (),
}

impl AHB {
    // TODO remove `allow`
    #[allow(dead_code)]
    pub(crate) fn enr(&mut self) -> &rcc::AHBENR {
        // NOTE(unsafe) this proxy grants exclusive access to this register
        unsafe { &(*RCC::ptr()).ahbenr }
    }
}

/// Advanced Peripheral Bus 1 (APB1) registers
pub struct APB1 {
    _0: (),
}


impl APB1 {
    pub(crate) fn enr(&mut self) -> &rcc::APB1ENR {
        // NOTE(unsafe) this proxy grants exclusive access to this register
        unsafe { &(*RCC::ptr()).apb1enr }
    }

    pub(crate) fn rstr(&mut self) -> &rcc::APB1RSTR {
        // NOTE(unsafe) this proxy grants exclusive access to this register
        unsafe { &(*RCC::ptr()).apb1rstr }
    }
}

/// Advanced Peripheral Bus 2 (APB2) registers
pub struct APB2 {
    _0: (),
}

impl APB2 {
    pub(crate) fn enr(&mut self) -> &rcc::APB2ENR {
        // NOTE(unsafe) this proxy grants exclusive access to this register
        unsafe { &(*RCC::ptr()).apb2enr }
    }

    pub(crate) fn rstr(&mut self) -> &rcc::APB2RSTR {
        // NOTE(unsafe) this proxy grants exclusive access to this register
        unsafe { &(*RCC::ptr()).apb2rstr }
    }
}

const HSI: u32 = 8_000_000; // Hz

pub struct CFGR {
    hse: Option<u32>,
    hclk: Option<u32>,
    pclk1: Option<u32>,
    pclk2: Option<u32>,
    sysclk: Option<u32>,
    adcclk: Option<u32>,
}

impl CFGR {
    /// Uses HSE (external oscillator) instead of HSI (internal RC oscillator) as the clock source.
    /// Will result in a hang if an external oscillator is not connected or it fails to start.
    pub fn use_hse<F>(mut self, freq: F) -> Self
    where
        F: Into<Hertz>,
    {
        self.hse = Some(freq.into().0);
        self
    }

    /// Sets the desired frequency for the HCLK clock
    pub fn hclk<F>(mut self, freq: F) -> Self
    where
        F: Into<Hertz>,
    {
        self.hclk = Some(freq.into().0);
        self
    }

    /// Sets the desired frequency for the PCKL1 clock
    pub fn pclk1<F>(mut self, freq: F) -> Self
    where
        F: Into<Hertz>,
    {
        self.pclk1 = Some(freq.into().0);
        self
    }

    /// Sets the desired frequency for the PCLK2 clock
    pub fn pclk2<F>(mut self, freq: F) -> Self
    where
        F: Into<Hertz>,
    {
        self.pclk2 = Some(freq.into().0);
        self
    }

    /// Sets the desired frequency for the SYSCLK clock
    pub fn sysclk<F>(mut self, freq: F) -> Self
    where
        F: Into<Hertz>,
    {
        self.sysclk = Some(freq.into().0);
        self
    }

    /// Sets the desired frequency for the ADCCLK clock
    pub fn adcclk<F>(mut self, freq: F) -> Self
    where
        F: Into<Hertz>,
    {
        self.adcclk = Some(freq.into().0);
        self
    }

    pub fn freeze(self, acr: &mut ACR) -> Clocks {
        let pllsrcclk = self.hse.unwrap_or(HSI / 2);

        let pllmul = self.sysclk.unwrap_or(pllsrcclk) / pllsrcclk;
        let pllmul = cmp::min(cmp::max(pllmul, 1), 16);

        let (pllmul_bits, sysclk) = if pllmul == 1 {
            (None, self.hse.unwrap_or(HSI))
        } else {
            (Some(pllmul as u8 - 2), pllsrcclk * pllmul)
        };

        assert!(sysclk <= 72_000_000);

        let hpre_bits = self
            .hclk
            .map(|hclk| match sysclk / hclk {
                0 => unreachable!(),
                1 => 0b0111,
                2 => 0b1000,
                3...5 => 0b1001,
                6...11 => 0b1010,
                12...39 => 0b1011,
                40...95 => 0b1100,
                96...191 => 0b1101,
                192...383 => 0b1110,
                _ => 0b1111,
            })
            .unwrap_or(0b0111);

        let hclk = sysclk / (1 << (hpre_bits - 0b0111));

        assert!(hclk <= 72_000_000);

        let ppre1_bits = self
            .pclk1
            .map(|pclk1| match hclk / pclk1 {
                0 => unreachable!(),
                1 => 0b011,
                2 => 0b100,
                3...5 => 0b101,
                6...11 => 0b110,
                _ => 0b111,
            })
            .unwrap_or(0b011);

        let ppre1 = 1 << (ppre1_bits - 0b011);
        let pclk1 = hclk / u32(ppre1);

        assert!(pclk1 <= 36_000_000);

        let ppre2_bits = self
            .pclk2
            .map(|pclk2| match hclk / pclk2 {
                0 => unreachable!(),
                1 => 0b011,
                2 => 0b100,
                3...5 => 0b101,
                6...11 => 0b110,
                _ => 0b111,
            })
            .unwrap_or(0b011);

        let ppre2 = 1 << (ppre2_bits - 0b011);
        let pclk2 = hclk / u32(ppre2);

        assert!(pclk2 <= 72_000_000);

        // adjust flash wait states
        #[cfg(feature = "stm32f103")]
        unsafe {
            acr.acr().write(|w| {
                w.latency().bits(if sysclk <= 24_000_000 {
                    0b000
                } else if sysclk <= 48_000_000 {
                    0b001
                } else {
                    0b010
                })
            })
        }

        // the USB clock is only valid if an external crystal is used, the PLL is enabled, and the
        // PLL output frequency is a supported one.
        // usbpre == true: divide clock by 1.5, otherwise no division
        let (usbpre, usbclk_valid) = match (self.hse, pllmul_bits, sysclk) {
            (Some(_), Some(_), 72_000_000) => (false, true),
            (Some(_), Some(_), 48_000_000) => (true, true),
            _ => (true, false),
        };

        let apre_bits = self
            .adcclk
            .map(|adcclk| match pclk2 / adcclk {
                0...2 => 0b00,
                3...4 => 0b01,
                5...7 => 0b10,
                _ => 0b11,
            })
            .unwrap_or(0b11);

        let apre = (apre_bits + 1) << 1;
        let adcclk = pclk2 / u32(apre);

        assert!(adcclk <= 14_000_000);

        let rcc = unsafe { &*RCC::ptr() };

        if self.hse.is_some() {
            // enable HSE and wait for it to be ready

            rcc.cr.modify(|_, w| w.hseon().set_bit());

            while rcc.cr.read().hserdy().bit_is_clear() {}
        }

        if let Some(pllmul_bits) = pllmul_bits {
            // enable PLL and wait for it to be ready

            rcc.cfgr.modify(|_, w| unsafe {
                w.pllmul()
                    .bits(pllmul_bits)
                    .pllsrc()
                    .bit(if self.hse.is_some() { true } else { false })
            });

            rcc.cr.modify(|_, w| w.pllon().set_bit());

            while rcc.cr.read().pllrdy().bit_is_clear() {}
        }

        // set prescalers and clock source
        #[cfg(feature = "stm32f103")]
        rcc.cfgr.modify(|_, w| unsafe {
            w.adcpre().bits(apre_bits);
            w.ppre2()
                .bits(ppre2_bits)
                .ppre1()
                .bits(ppre1_bits)
                .hpre()
                .bits(hpre_bits)
                .usbpre()
                .bit(usbpre)
                .sw()
                .bits(if pllmul_bits.is_some() {
                    // PLL
                    0b10
                } else if self.hse.is_some() {
                    // HSE
                    0b1
                } else {
                    // HSI
                    0b0
                })
        });

        #[cfg(any(
                feature = "stm32f100",
                feature = "stm32f101"
        ))]
        rcc.cfgr.modify(|_, w| unsafe {
            w.adcpre().bits(apre_bits);
            w.ppre2()
                .bits(ppre2_bits)
                .ppre1()
                .bits(ppre1_bits)
                .hpre()
                .bits(hpre_bits)
                .sw()
                .bits(if pllmul_bits.is_some() {
                    // PLL
                    0b10
                } else if self.hse.is_some() {
                    // HSE
                    0b1
                } else {
                    // HSI
                    0b0
                })
        });

        Clocks {
            hclk: Hertz(hclk),
            pclk1: Hertz(pclk1),
            pclk2: Hertz(pclk2),
            ppre1,
            ppre2,
            sysclk: Hertz(sysclk),
            adcclk: Hertz(adcclk),
            usbclk_valid,
        }
    }
}

pub struct BKP {
    _0: ()
}

impl BKP {
    /// Enables write access to the registers in the backup domain
    pub fn constrain(self, bkp: crate::pac::BKP, apb1: &mut APB1, pwr: &mut PWR) -> BackupDomain {
        // Enable the backup interface by setting PWREN and BKPEN
        apb1.enr().modify(|_r, w| {
            w
                .bkpen().set_bit()
                .pwren().set_bit()
        });

        // Enable access to the backup registers
        pwr.cr.modify(|_r, w| {
            w
                .dbp().set_bit()
        });

        BackupDomain {
            _regs: bkp,
        }
    }
}


/// Frozen clock frequencies
///
/// The existence of this value indicates that the clock configuration can no longer be changed
#[derive(Clone, Copy)]
pub struct Clocks {
    hclk: Hertz,
    pclk1: Hertz,
    pclk2: Hertz,
    ppre1: u8,
    ppre2: u8,
    sysclk: Hertz,
    adcclk: Hertz,
    usbclk_valid: bool,
}

impl Clocks {
    /// Returns the frequency of the AHB
    pub fn hclk(&self) -> Hertz {
        self.hclk
    }

    /// Returns the frequency of the APB1
    pub fn pclk1(&self) -> Hertz {
        self.pclk1
    }

    /// Returns the frequency of the APB2
    pub fn pclk2(&self) -> Hertz {
        self.pclk2
    }

    /// Returns the frequency of the APB1 Timers
    pub fn pclk1_tim(&self) -> Hertz {
        Hertz(self.pclk1.0 * if self.ppre1() == 1 { 1 } else { 2 })
    }

    /// Returns the frequency of the APB2 Timers
    pub fn pclk2_tim(&self) -> Hertz {
        Hertz(self.pclk2.0 * if self.ppre2() == 1 { 1 } else { 2 })
    }

    pub(crate) fn ppre1(&self) -> u8 {
        self.ppre1
    }

    // TODO remove `allow`
    #[allow(dead_code)]
    pub(crate) fn ppre2(&self) -> u8 {
        self.ppre2
    }

    /// Returns the system (core) frequency
    pub fn sysclk(&self) -> Hertz {
        self.sysclk
    }

    /// Returns the adc clock frequency
    pub fn adcclk(&self) -> Hertz {
        self.adcclk
    }

    /// Returns whether the USBCLK clock frequency is valid for the USB peripheral
    pub fn usbclk_valid(&self) -> bool {
        self.usbclk_valid
    }
}