1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
#![doc(html_root_url = "https://docs.rs/state/0.5.1")]
#![warn(missing_docs)]

//! # Safe, Effortless `state` Management
//!
//! This crate allows you to safely and effortlessly manage global and/or
//! thread-local state. Three primitives are provided for state management:
//!
//!  * **[`struct@Container`]:** Type-based storage for many values.
//!  * **[`Storage`]:** Lazy storage for a single value.
//!  * **[`LocalStorage`]:** Lazy thread-local storage for a single value.
//!
//! ## Usage
//!
//! Include `state` in your `Cargo.toml` `[dependencies]`:
//!
//! ```toml
//! [dependencies]
//! state = "0.5"
//! ```
//!
//! Thread-local state management is not enabled by default. You can enable it
//! via the `tls` feature:
//!
//! ```toml
//! [dependencies]
//! state = { version = "0.5", features = ["tls"] }
//! ```
//!
//! ## Use Cases
//!
//! ### Memoizing Expensive Operations
//!
//! The [`Storage`] type can be used to conveniently memoize expensive
//! read-based operations without needing to mutably borrow. Consider a `struct`
//! with a field `value` and method `compute()` that performs an expensive
//! operation on `value` to produce a derived value. We can use `Storage` to
//! memoize `compute()`:
//!
//! ```rust
//! use state::Storage;
//!
//! struct Value;
//! struct DerivedValue;
//!
//! struct Foo {
//!     value: Value,
//!     cached: Storage<DerivedValue>
//! }
//!
//! impl Foo {
//!     fn set_value(&mut self, v: Value) {
//!         self.value = v;
//!         self.cached = Storage::new();
//!     }
//!
//!     fn compute(&self) -> &DerivedValue {
//!         self.cached.get_or_set(|| {
//!             let _value = &self.value;
//!             unimplemented!("expensive computation with `self.value`")
//!         })
//!     }
//! }
//! ```
//!
//! ### Read-Only Singleton
//!
//! Suppose you have the following structure which is initialized in `main`
//! after receiving input from the user:
//!
//! ```rust
//! struct Configuration {
//!     name: String,
//!     number: isize,
//!     verbose: bool
//! }
//!
//! fn main() {
//!     let config = Configuration {
//!         /* fill in structure at run-time from user input */
//! #        name: "Sergio".to_string(),
//! #        number: 1,
//! #        verbose: true
//!     };
//! }
//! ```
//!
//! You'd like to access this structure later, at any point in the program,
//! without any synchronization overhead. Prior to `state`, assuming you needed
//! to setup the structure after program start, your options were:
//!
//!   1. Use `static mut` and `unsafe` to set an `Option<Configuration>` to
//!      `Some`. Retrieve by checking for `Some`.
//!   2. Use `lazy_static` with a `RwLock` to set an
//!      `RwLock<Option<Configuration>>` to `Some`. Retrieve by `lock`ing and
//!      checking for `Some`, paying the cost of synchronization.
//!
//! With `state`, you can use [`LocalStorage`] as follows:
//!
//! ```rust
//! # extern crate state;
//! # #[cfg(feature = "tls")]
//! # fn main() {
//! # use state::LocalStorage;
//! # struct Configuration { name: String, number: isize, verbose: bool }
//! static CONFIG: LocalStorage<Configuration> = LocalStorage::new();
//!
//! fn main() {
//!     CONFIG.set(|| Configuration {
//!         /* fill in structure at run-time from user input */
//! #        name: "Sergio".to_string(),
//! #        number: 1,
//! #        verbose: true
//!     });
//!
//!     /* at any point later in the program, in any thread */
//!     let config = CONFIG.get();
//! }
//! # }
//! # #[cfg(not(feature = "tls"))]
//! # fn main() {  }
//! ```
//!
//! Note that you can _also_ use [`Storage`] to the same effect.
//!
//! ### Read/Write Singleton
//!
//! Following from the previous example, let's now say that we want to be able
//! to modify our singleton `Configuration` structure as the program evolves. We
//! have two options:
//!
//!   1. If we want to maintain the _same_ state in any thread, we can use a
//!      `Storage` structure and wrap our `Configuration` structure in a
//!      synchronization primitive.
//!   2. If we want to maintain _different_ state in any thread, we can continue
//!      to use a `LocalStorage` structure and wrap our `LocalStorage` type in a
//!      `Cell` structure for internal mutability.
//!
//! In this example, we'll choose **1**. The next example illustrates an
//! instance of **2**.
//!
//! The following implements **1** by using a `Storage` structure and wrapping
//! the `Configuration` type with a `RwLock`:
//!
//! ```rust
//! # struct Configuration { name: String, number: isize, verbose: bool }
//! # use state::Storage;
//! # use std::sync::RwLock;
//! static CONFIG: Storage<RwLock<Configuration>> = Storage::new();
//!
//! fn main() {
//!     let config = Configuration {
//!         /* fill in structure at run-time from user input */
//! #        name: "Sergio".to_string(),
//! #        number: 1,
//! #        verbose: true
//!     };
//!
//!     // Make the config avaiable globally.
//!     CONFIG.set(RwLock::new(config));
//!
//!     /* at any point later in the program, in any thread */
//!     let mut_config = CONFIG.get().write();
//! }
//! ```
//!
//! ### Mutable, thread-local data
//!
//! Imagine you want to count the number of invocations to a function per
//! thread. You'd like to store the count in a `Cell<usize>` and use
//! `count.set(count.get() + 1)` to increment the count. Prior to `state`, your
//! only option was to use the `thread_local!` macro. `state` provides a more
//! flexible, and arguably simpler solution via `LocalStorage`. This scanario
//! is implemented in the folloiwng:
//!
//! ```rust
//! # extern crate state;
//! # use std::cell::Cell;
//! # use std::thread;
//! # #[cfg(feature = "tls")]
//! # use state::LocalStorage;
//! # #[cfg(feature = "tls")]
//! static COUNT: LocalStorage<Cell<usize>> = LocalStorage::new();
//!
//! # #[cfg(not(feature = "tls"))] fn function_to_measure() { }
//! # #[cfg(feature = "tls")]
//! fn function_to_measure() {
//!     let count = COUNT.get();
//!     count.set(count.get() + 1);
//! }
//!
//! # #[cfg(not(feature = "tls"))] fn main() { }
//! # #[cfg(feature = "tls")]
//! fn main() {
//!     // setup the initializer for thread-local state
//!     COUNT.set(|| Cell::new(0));
//!
//!     // spin up many threads that call `function_to_measure`.
//!     let mut threads = vec![];
//!     for i in 0..10 {
//!         threads.push(thread::spawn(|| {
//!             // Thread IDs may be reusued, so we reset the state.
//!             COUNT.get().set(0);
//!             function_to_measure();
//!             COUNT.get().get()
//!         }));
//!     }
//!
//!     // retrieve the total
//!     let total: usize = threads.into_iter()
//!         .map(|t| t.join().unwrap())
//!         .sum();
//!
//!     assert_eq!(total, 10);
//! }
//! ```
//! ## Correctness
//!
//! `state` has been extensively vetted, manually and automatically, for soundness
//! and correctness. _All_ unsafe code, including in internal concurrency
//! primitives, `Container`, and `Storage` are exhaustively verified for pairwise
//! concurrency correctness and internal aliasing exclusion with `loom`.
//! Multithreading invariants, aliasing invariants, and other soundness properties
//! are verified with `miri`. Verification is run by the CI on every commit.
//!
//! ## Performance
//!
//! `state` is heavily tuned to perform optimally. `get{_local}` and
//! `set{_local}` calls to a `Container` incur overhead due to type lookup.
//! `Storage`, on the other hand, is optimal for global storage retrieval; it is
//! _slightly faster_ than accessing global state initialized through
//! `lazy_static!`, more so across many threads. `LocalStorage` incurs slight
//! overhead due to thread lookup. However, `LocalStorage` has no
//! synchronization overhead, so retrieval from `LocalStorage` is faster than
//! through `Storage` across many threads.
//!
//! Bear in mind that `state` allows global initialization at _any_ point in the
//! program. Other solutions, such as `lazy_static!` and `thread_local!` allow
//! initialization _only_ a priori. In other words, `state`'s abilities are a
//! superset of those provided by `lazy_static!` and `thread_local!` while being
//! more performant.
//!
//! ## When To Use
//!
//! You should avoid using global `state` as much as possible. Instead, thread
//! state manually throughout your program when feasible.

mod ident_hash;
mod storage;
mod init;
mod shim;

#[doc(hidden)]
pub mod container;

pub use container::Container;
pub use storage::Storage;
pub(crate) use shim::*;

#[cfg(feature = "tls")] mod tls;
#[cfg(feature = "tls")] mod thread_local;
#[cfg(feature = "tls")] pub use tls::LocalStorage;

/// Exports for use by loom tests but otherwise private.
#[cfg(loom)]
#[path = "."]
pub mod private {
    /// The `Init` type.
    pub mod init;
}