1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
use std::alloc::{alloc, dealloc, handle_alloc_error, Layout};
use std::marker::PhantomData;
use std::ptr::{self, NonNull};
use std::sync::atomic::{AtomicUsize, Ordering};
use std::{fmt, mem, ops};

use mem::MaybeUninit;

static NEXT_BUILDER_ID: AtomicUsize = AtomicUsize::new(0);

/// Creates a new [`Builder`].
///
/// ## Example
///
/// ```rust
/// let builder = stadium::builder();
///
/// /* profit */
/// ```
///
/// [`Builder`]: `struct.Builder.html`
#[inline(always)]
pub fn builder<'a>() -> Builder<'a> {
    Builder::new()
}

/// A chunk of allocated memory that stores a bunch of values of different types.
///
/// ## Example
///
/// ```rust
/// let mut builder = stadium::builder();
///
/// let h_vec = builder.insert(vec![1, 2, 3, 4]);
/// let h_string = builder.insert(String::from("Hello"));
/// let h_str = builder.insert("World");
///
/// let mut stadium = builder.build();
///
/// stadium[h_vec][0] = 2;
/// assert_eq!(&stadium[h_vec][..], &[2, 2, 3, 4]);
///
/// assert_eq!(stadium[h_str], "World");
/// ```
///
/// Note that using a `String` or a `Vec` inside of a [`Stadium`] defies a bit of its
/// original purpose (which is storing those different types localy in memory).
///
/// [`Stadium`]: struct.Stadium.html
pub struct Stadium<'a> {
    /// The id of the stadium. This id is unique and prevent a user to use a handle
    /// from another stadium.
    id: usize,

    /// A pointer to the owned data.
    ///
    /// In the case of an empty allocation, this pointer is `NonNull::dangling()`.
    data: NonNull<u8>,

    /// The layout that was used to allocate the stadium.
    layout: Layout,

    /// Maps an `index` to the location of an object.
    ///
    /// SAFETY: All the `Location`s within this vector must reference objects
    /// owned by the stadium.
    ///
    /// When a handle is given by a `Builder`, the `index` and the `T` of that
    /// handle must always match the `Location` at the given index in this vector.
    locations: Box<[Location]>,

    /// The lifetime of the types used inside of the stadium.
    _lifetime: PhantomData<&'a ()>,
}

impl<'a> Stadium<'a> {
    /// Creates a new [`Builder`].
    ///
    /// ## Example
    ///
    /// ```rust
    /// use stadium::Stadium;
    ///
    /// let builder = Stadium::builder();
    /// ```
    ///
    /// [`Builder`] struct.Builder.html
    #[inline(always)]
    pub fn builder() -> Builder<'a> {
        Builder::new()
    }

    /// Checks if the given [`Handle`] can be safely used with this [`Stadium`].
    ///
    /// ## Example
    ///
    /// ```rust
    /// let mut builder_1 = stadium::builder();
    /// let handle_1 = builder_1.insert("I'm a string inserted in the first stadium");
    /// let stadium_1 = builder_1.build();
    ///
    /// let mut builder_2 = stadium::builder();
    /// let handle_2 = builder_2.insert("I'm a string inserted in the second stadium");
    /// let stadium_2 = builder_2.build();
    ///
    /// assert_eq!(stadium_1.is_associated_with(handle_2), false);
    /// assert_eq!(stadium_1.is_associated_with(handle_1), true);
    /// assert_eq!(stadium_2.is_associated_with(handle_2), true);
    /// assert_eq!(stadium_2.is_associated_with(handle_1), false);
    /// ```
    ///
    /// [`Handle`]: struct.Handle.html
    /// [`Stadium`]: struct.Stadium.html
    #[inline(always)]
    pub fn is_associated_with<T: 'a>(&self, handle: Handle<T>) -> bool {
        handle.id == self.id
    }

    /// Replaces the object referenced by the given [`Handle`].
    ///
    /// ## Safety
    ///
    /// The provided [`Handle`] must be associated with this [`Stadium`].
    ///
    /// To check if a [`Handle`] can be safely used with a given [`Stadium`], use the
    /// [`Stadium::is_associated_with`] function.
    ///
    /// ## Example
    ///
    /// ```rust
    /// let mut builder = stadium::builder();
    /// let handle = builder.insert(4);
    /// let mut stadium = builder.build();
    ///
    /// // SAFETY: The handle was created for this stadium.
    /// unsafe {
    ///     assert_eq!(stadium.replace_unchecked(handle, 5), 4);
    ///     assert_eq!(stadium.get_unchecked(handle), &5);
    /// }
    /// ```
    ///
    /// [`Handle`]: struct.Handle.html
    /// [`Stadium`]: struct.Stadium.html
    /// [`Stadium::is_associated_with`]: struct.Stadium.html#method.is_associated_with
    #[inline(always)]
    pub unsafe fn replace_unchecked<T: 'a>(&mut self, handle: Handle<T>, val: T) -> T {
        mem::replace(self.get_unchecked_mut(handle), val)
    }

    /// Replaces the object referenced by the given [`Handle`] with the given value.
    ///
    /// ## Panics
    ///
    /// This function panics if `handle` is not associated with this [`Stadium`].
    ///
    /// To check if a [`Handle`] can be safely used with a given [`Stadium`], use the
    /// [`Stadium::is_associated_with`] function.
    ///
    /// ## Example
    ///
    /// ```rust
    /// let mut builder = stadium::builder();
    /// let handle = builder.insert(5);
    /// let mut stadium = builder.build();
    ///
    /// assert_eq!(stadium.replace(handle, 6), 5);
    /// assert_eq!(stadium.get(handle), &6);
    /// ```
    ///
    /// [`Handle`]: struct.Handle.html
    /// [`Stadium`]: struct.Stadium.html
    /// [`Stadium::is_associated_with`]: struct.Stadium.html#method.is_associated_with
    #[inline(always)]
    pub fn replace<T: 'a>(&mut self, handle: Handle<T>, val: T) -> T {
        mem::replace(self.get_mut(handle), val)
    }

    /// Gets a reference to a value that is part of the [`Stadium`].
    ///
    /// ## Panics
    ///
    /// This function panics if `handle` is not associated with this `Stadium`.
    ///
    /// To check if a [`Handle`] can be safely used with a given [`Stadium`], use the
    /// [`Stadium::is_associated_with`] function.
    ///
    /// ## Example
    ///
    /// ```rust
    /// let mut builder = stadium::builder();
    ///
    /// let h_num = builder.insert(2023);
    /// let h_str = builder.insert("Hello, world");
    ///
    /// let stadium = builder.build();
    ///
    /// assert_eq!(stadium.get(h_str), &"Hello, world");
    /// assert_eq!(stadium.get(h_num), &2023);
    /// ```
    ///
    /// [`Handle`]: struct.Handle.html
    /// [`Stadium`]: struct.Stadium.html
    /// [`Stadium::is_associated_with`]: struct.Stadium.html#method.is_associated_with
    #[inline]
    pub fn get<T: 'a>(&self, handle: Handle<T>) -> &T {
        assert!(
            self.is_associated_with(handle),
            "The given handle was not created for this stadium"
        );

        // SAFETY: If a handle is valid, its index is always in the bounds of `locations`.
        unsafe {
            // SAFETY: The handle was created for this stadium.
            // The object has a location.
            self.get_unchecked(handle)
        }
    }

    /// Gets a reference to a value that is part of the [`Stadium`].
    ///
    /// ## Panics
    ///
    /// This function panics if `handle` is not associated with this [`Stadium`].
    ///
    /// To check if a [`Handle`] can be safely used with a given [`Stadium`], use the
    /// [`Stadium::is_associated_with`] function.
    ///
    /// ## Example
    ///
    /// ```rust
    /// let mut builder = stadium::builder();
    ///
    /// let h_num = builder.insert(250);
    /// let h_vec = builder.insert(vec![1, 2, 3]);
    ///
    /// let mut stadium = builder.build();
    ///
    /// *stadium.get_mut(h_num) = 5;
    /// stadium.get_mut(h_vec).push(4);
    ///
    /// assert_eq!(stadium.get(h_num), &5);
    /// assert_eq!(&stadium.get(h_vec)[..], &[1, 2, 3, 4])
    /// ```
    ///
    /// [`Handle`]: struct.Handle.html
    /// [`Stadium`]: struct.Stadium.html
    /// [`Stadium::is_associated_with`]: struct.Stadium.html#method.is_associated_with
    #[inline]
    pub fn get_mut<T: 'a>(&mut self, handle: Handle<T>) -> &mut T {
        assert!(
            self.is_associated_with(handle),
            "The given handle was not created for this stadium"
        );

        // SAFETY: see `Stadium::get`
        unsafe { self.get_unchecked_mut(handle) }
    }

    /// Gets a reference to a value that is part of the [`Stadium`].
    ///
    /// ## Safety
    ///
    /// The provided [`Handle`] must be associated with this [`Stadium`].
    ///
    /// To check if a [`Handle`] can be safely used with a given [`Stadium`], use the
    /// [`Stadium::is_associated_with`] function.
    ///
    /// ## Example
    ///
    /// ```rust
    /// let mut builder = stadium::builder();
    /// let handle = builder.insert(5);
    /// let mut stadium = builder.build();
    ///
    /// // SAFETY: The handle was provided by the builder of this stadium.
    /// unsafe { assert_eq!(stadium.get_unchecked(handle), &5) };
    /// ```
    ///
    /// [`Handle`]: struct.Handle.html
    /// [`Stadium`]: struct.Stadium.html
    /// [`Stadium::is_associated_with`]: struct.Stadium.html#method.is_associated_with
    #[inline(always)]
    pub unsafe fn get_unchecked<T: 'a>(&self, handle: Handle<T>) -> &T {
        // SAFETY: This function can only be called using a shared reference to `self`
        // This ensure that no one has a mutable reference to this `T`.
        //
        // The caller must ensure that `handle` is associated with this `Stadium`.
        &*self.get_ptr(handle)
    }

    /// Gets a reference to a value that is part of the [`Stadium`].
    ///
    /// ## Safety
    ///
    /// The provided [`Handle`] must be associated with this [`Stadium`].
    ///
    /// To check if a [`Handle`] can be safely used with a given [`Stadium`], use the
    /// [`Stadium::is_associated_with`] function.
    ///
    /// ## Example
    ///
    /// ```rust
    /// let mut builder = stadium::builder();
    /// let handle = builder.insert(5);
    /// let mut stadium = builder.build();
    ///
    /// // SAFETY: The handle was provided by the builder of this stadium.
    /// unsafe {
    ///     *stadium.get_unchecked_mut(handle) = 4;
    ///     assert_eq!(stadium.get_unchecked(handle), &4);
    /// }
    /// ```
    ///
    /// [`Handle`]: struct.Handle.html
    /// [`Stadium`]: struct.Stadium.html
    /// [`Stadium::is_associated_with`]: struct.Stadium.html#method.is_associated_with
    #[inline(always)]
    pub unsafe fn get_unchecked_mut<T: 'a>(&mut self, handle: Handle<T>) -> &mut T {
        // SAFETY: This function was called using a mutable reference to `self`.
        // This ensure that no one else has a mutable reference to this `T`.
        //
        // The caller must ensure that `handle` is associated with this `Stadium`.
        &mut *self.get_ptr_mut(handle)
    }

    /// Gets a pointer to the element referenced by the given [`RawHandle`].
    ///
    /// ## Safety
    ///
    /// This function is unsafe unless:
    ///  * The given [`Handle`] is associated with this [`Stadium`].
    ///  * The returned pointer is used *as if* it was a `*const T` where
    /// `T` is the type of the original [`Handle`] (it was `Handle<T>`).
    ///
    /// To check if a [`Handle`] can be safely used with a given [`Stadium`], use the
    /// [`Stadium::is_associated_with`] function.
    ///
    /// [`Handle`]: struct.Handle.html
    /// [`Stadium`]: struct.Stadium.html
    /// [`Stadium::is_associated_with`]: struct.Stadium.html#method.is_associated_with
    /// [`RawHandle`]: struct.RawHandle.html
    #[inline(always)]
    pub unsafe fn get_ptr_raw(&self, handle: RawHandle) -> *const u8 {
        // SAFETY: The caller must ensure that the handle is actually valid.
        // A valid handle hold an index that is in bounds.
        self.locations.get_unchecked(handle.index).data
    }

    /// Gets a pointer to the element referenced by the given [`RawHandle`].
    ///
    /// ## Safety
    ///
    /// This function is unsafe unless:
    ///  * The given [`Handle`] is associated with this [`Stadium`].
    ///  * The returned pointer is used *as if* it was a `*mut T` where
    /// `T` is the type of the original [`Handle`] (it was `Handle<T>`).
    ///
    /// To check if a [`Handle`] can be safely used with a given [`Stadium`], use the
    /// [`Stadium::is_associated_with`] function.
    ///
    /// [`Handle`]: struct.Handle.html
    /// [`Stadium`]: struct.Stadium.html
    /// [`Stadium::is_associated_with`]: struct.Stadium.html#method.is_associated_with
    /// [`RawHandle`]: struct.RawHandle.html
    #[inline(always)]
    pub unsafe fn get_ptr_mut_raw(&mut self, handle: RawHandle) -> *mut u8 {
        // SAFETY: The caller must ensure that the handle is actually valid.
        // A valid handle hold an index that is in bounds.
        self.locations.get_unchecked_mut(handle.index).data
    }

    /// Gets a pointer to the element referenced by the given [`Handle`].
    ///
    /// ## Safety
    ///
    /// The given [`Handle`] must be associated with this [`Stadium`].
    ///
    /// To check if a [`Handle`] can be safely used with a given [`Stadium`], use the
    /// [`Stadium::is_associated_with`] function.
    ///
    /// [`Handle`]: struct.Handle.html
    /// [`Stadium`]: struct.Stadium.html
    /// [`Stadium::is_associated_with`]: struct.Stadium.html#method.is_associated_with
    #[inline(always)]
    pub unsafe fn get_ptr<T: 'a>(&self, handle: Handle<T>) -> *const T {
        // SAFETY: The caller must ensure that the handle was associated with this
        // `Stadium`.
        // The raw handle was created from a `Handle<T>`.
        self.get_ptr_raw(handle.raw()).cast()
    }

    /// Gets a pointer to the element referenced by the given [`Handle`].
    ///
    /// ## Safety
    ///
    /// The given [`Handle`] must be associated with this [`Stadium`].
    ///
    /// To check if a [`Handle`] can be safely used with a given [`Stadium`], use the
    /// [`Stadium::is_associated_with`] function.
    ///
    /// [`Handle`]: struct.Handle.html
    /// [`Stadium`]: struct.Stadium.html
    /// [`Stadium::is_associated_with`]: struct.Stadium.html#method.is_associated_with
    #[inline(always)]
    pub unsafe fn get_ptr_mut<T: 'a>(&mut self, handle: Handle<T>) -> *mut T {
        // SAFETY: The caller must ensure that the handle was associated with this
        // `Stadium`.
        // The raw handle was created from a `Handle<T>`.
        self.get_ptr_mut_raw(handle.raw()).cast()
    }

    /// Swaps the values referenced by `a` and `b` within this [`Stadium`].
    ///
    /// ## Safety
    ///
    /// * This given handles `a` and `b` must both be associated with this [`Stadium`].
    /// * `a` must be different from `b`
    ///
    /// ## Example
    ///
    /// ```rust
    /// let mut builder = stadium::builder();
    /// let a = builder.insert("Foo");
    /// let b = builder.insert("Bar");
    /// let mut s = builder.build();
    ///
    /// assert_eq!(s[a], "Foo");
    /// assert_eq!(s[b], "Bar");
    ///
    /// // SAFETY: Those two handles are associated with `s`.
    /// unsafe { s.swap_unchecked(a, b); }
    ///
    /// assert_eq!(s[a], "Bar");
    /// assert_eq!(s[b], "Foo");
    /// ```
    ///
    /// [`Stadium`]: struct.Stadium.html
    pub unsafe fn swap_unchecked<T: 'a>(&mut self, a: Handle<T>, b: Handle<T>) {
        // SAFETY: This function was called using a mutable reference to `self`
        // which mean no one else has a reference to any of those two objects.
        //
        // The caller must ensure that the given handle is actually valid AND
        // distinct.
        let a = &mut *self.get_ptr_mut(a);
        let b = &mut *self.get_ptr_mut(b);
        mem::swap(a, b);
    }

    /// Swaps the values referenced by `a` and `b` within this [`Stadium`].
    ///
    /// ## Panics
    ///
    /// This function panics if one of `a` or `b` is not associated with tihs [`Stadium`].
    ///
    /// To check if a [`Handle`] can be safely used with a given [`Stadium`], use the
    /// [`Stadium::is_associated_with`] function.
    ///
    /// ## Example
    ///
    /// ```rust
    /// let mut builder = stadium::builder();
    /// let a = builder.insert("Foo");
    /// let b = builder.insert("Bar");
    /// let mut s = builder.build();
    ///
    /// assert_eq!(s[a], "Foo");
    /// assert_eq!(s[b], "Bar");
    ///
    /// s.swap(a, b);
    ///
    /// assert_eq!(s[a], "Bar");
    /// assert_eq!(s[b], "Foo");
    /// ```
    ///
    /// [`Handle`]: struct.Handle.html
    /// [`Stadium`]: struct.Stadium.html
    /// [`Stadium::is_associated_with`]: struct.Stadium.html#method.is_associated_with
    pub fn swap<T: 'a>(&mut self, a: Handle<T>, b: Handle<T>) {
        if a != b {
            assert!(
                self.is_associated_with(a),
                "`a` is not associated with this `Stadium`"
            );
            assert!(
                self.is_associated_with(b),
                "`b` is not associated with this `Stadium`"
            );

            // SAFETY: a != b and those handles are both
            // associated with this `Stadium`.
            unsafe { self.swap_unchecked(a, b) };
        }
    }
}

impl Drop for Stadium<'_> {
    fn drop(&mut self) {
        for location in self.locations.iter() {
            if let Some(drop_fn) = location.meta.drop_fn {
                // SAFETY: The data in the stadium is always initialized.
                unsafe { drop_fn(location.data) };
            }
        }

        // Now that all objects are dropped
        // We can deallocate the chunk of memory

        // check for empty stadiums
        if self.data != NonNull::dangling() {
            // SAFETY: The chunk was allocated with the same allocator and layout.
            unsafe { dealloc(self.data.as_ptr(), self.layout) };
        }
    }
}

impl<'a, T: 'a> ops::Index<Handle<T>> for Stadium<'a> {
    type Output = T;

    #[inline(always)]
    fn index(&self, handle: Handle<T>) -> &Self::Output {
        self.get(handle)
    }
}

impl<'a, T: 'a> ops::IndexMut<Handle<T>> for Stadium<'a> {
    #[inline(always)]
    fn index_mut(&mut self, handle: Handle<T>) -> &mut Self::Output {
        self.get_mut(handle)
    }
}

/// Locates an object within a `Stadium`.
struct Location {
    /// A pointer to the actual object.
    data: *mut u8,
    /// Information about the object.
    meta: ObjectMeta,
}

/// A structure used to create a [`Stadium`]. This function can be created using
/// the [`stadium::builder`] function.
///
/// [`Stadium`]: struct.Stadium.html
/// [`stadium::builder`]: fn.builder.html
pub struct Builder<'a> {
    id: usize,
    reserved_objects: Vec<Reserved<'a>>,
}

impl<'a> Builder<'a> {
    /// Creates a new instance of [`Builder`].
    ///
    /// ## Example
    ///
    /// ```rust
    /// let builder = stadium::Builder::new();
    /// // That it! Now you have your own builder.
    /// ```
    ///
    /// [`Builder`]: struct.Builder.html
    #[inline(always)]
    pub fn new() -> Self {
        Self {
            id: NEXT_BUILDER_ID.fetch_add(1, Ordering::Relaxed),
            reserved_objects: Vec::new(),
        }
    }

    /// Prepares the insertion of `init` into the [`Stadium`].
    ///
    /// ## Panics
    ///
    /// This function panics if it fails to allocate a box for `init`.
    ///
    /// [`Stadium`]: struct.Stadium.html
    pub fn insert<T: 'a>(&mut self, init: T) -> Handle<T> {
        let index = self.reserved_objects.len();
        self.reserved_objects.push(Reserved::new(init));
        Handle {
            id: self.id,
            index,
            _marker: PhantomData,
        }
    }

    /// Prepares the insertion of a `MaybeUninit<T>` into the [`Stadium`] where
    /// `T` is the type described by the given [`ObjectMeta`] structure.
    ///
    /// ## Panics
    ///
    /// This function panics if it fails to allocate a box for a `MaybeUninit<T>`.
    ///
    /// [`ObjectMeta`]: struct.ObjectMeta.html
    /// [`Stadium`]: struct.Stadium.html
    pub fn insert_raw(&mut self, meta: ObjectMeta) -> RawHandle {
        let index = self.reserved_objects.len();
        self.reserved_objects.push(Reserved::uninit(meta));
        RawHandle { index }
    }

    /// Builds a new [`Stadium`].
    ///
    /// ## Panics
    ///
    /// This function can panics if one of the following events occure:
    ///  * The builder is empty
    ///  * The function fails to allocate for the stadium
    ///
    /// [`Stadium`]: struct.Stadium.html
    pub fn build(self) -> Stadium<'a> {
        let objects = self.reserved_objects;
        let id = self.id;

        let mut total_size = 0;
        let mut max_align = 1;

        for obj in &objects {
            total_size += obj.meta.layout.size();
            max_align = Ord::max(max_align, obj.meta.layout.align());
        }

        let layout = Layout::from_size_align(total_size, max_align)
            .expect("Failed to compute the layout of the stadium");

        let ptr = unsafe {
            if total_size == 0 {
                // The stadium will be either empty or only store zero-sized types.
                NonNull::dangling() // zero-sized allocation
            } else {
                NonNull::new(alloc(layout)).unwrap_or_else(|| handle_alloc_error(layout))
            }
        };

        let object_count = objects.len();

        let mut sorted_vector: Vec<(usize, Reserved)> = objects.into_iter().enumerate().collect();

        // Sort the vector so that objects are sorted by align (ascending).
        sorted_vector.sort_unstable_by_key(|(_, o)| o.meta.layout.align());

        // We need this structure to map the handles that the builder has given
        // to actual objects within the stadium.
        // TODO: use `Box::new_uninit_slice` when stable.
        let mut locations: Vec<Location> = Vec::with_capacity(object_count);

        let mut cursor = ptr.as_ptr();
        for (original_index, obj) in sorted_vector.into_iter().rev() {
            // Safety check that should always pass
            assert_eq!(cursor as usize % obj.meta.layout.align(), 0);

            // SAFETY: We just checked if cursor was well-aligned.
            // We know cursor cannot be null.
            // We own the memory and have exclusive access to it.
            let meta = unsafe { obj.consume(cursor) };

            // The cursor stays aligned because the size of an object is always
            // a multiple of its alignement. Because we are iterating in reversed
            // order (large align -> little align), the cursor is always aligned
            // to the current object.
            //
            // This works because the alignement is always a power of 2.

            // SAFETY: it is important that the index is the same as the index that
            // was given to the used through the `Handle`. This index will
            // be trusted by the `Stadium` for the type of the object and for its
            // location.
            //
            // The `locations` vector was created with a capacity of `object_count`
            // The values of `original_index` are all differents and
            // `0 <= original_index < object_count`.
            unsafe {
                locations
                    .as_mut_ptr()
                    .add(original_index)
                    .write(Location { meta, data: cursor });
            }

            // SAFETY: We own the data. A safety check will be done after the loop.
            cursor = unsafe { cursor.add(meta.layout.size()) };
        }

        // SAFETY: This vector was properly initialized inside the loop and has a
        // capacity of `object_count`.
        unsafe { locations.set_len(object_count) };

        // Safety check that should always pass
        assert_eq!(cursor as usize, ptr.as_ptr() as usize + total_size);

        // Now the stadium is properly initialized.

        Stadium {
            id,
            data: ptr,
            layout,
            locations: locations.into_boxed_slice(),
            _lifetime: PhantomData,
        }
    }
}

impl<'a> From<Builder<'a>> for Stadium<'a> {
    #[inline(always)]
    fn from(builder: Builder<'a>) -> Self {
        builder.build()
    }
}

// In the following documentation, the type `T` is refering to the type of the reserved
// object.

/// Stores information about a `T`.
#[derive(Clone, Copy)]
pub struct ObjectMeta {
    /// The layout of `T`.
    layout: Layout,
    /// A function that causes a `T` to be dropped.
    ///
    /// ## Safety
    ///
    /// * The given pointer must reference an initialized `T`.
    drop_fn: Option<unsafe fn(*mut u8)>,
}

impl ObjectMeta {
    /// Computes the [`ObjectMeta`] of the type `T`.
    ///
    /// [`ObjectMeta`]: struct.ObjectMeta.html
    pub fn of<T>() -> Self {
        Self {
            layout: Layout::new::<T>(),
            drop_fn: if mem::needs_drop::<T>() {
                Some(|ptr: *mut u8| unsafe { ptr::drop_in_place(ptr as *mut T) })
            } else {
                None
            },
        }
    }
}

/// Stores information about a `T` as well as an initialized instance of `T`.
///
/// This structure never stores a zero-sized struct.
struct Reserved<'a> {
    /// Stores information about a `T`.
    meta: ObjectMeta,
    /// A pointer to an initialized value of type `T`.
    initial_value: NonNull<u8>,

    // The lifetime of `T`.
    _lifetime: PhantomData<&'a ()>,
}

impl<'a> Reserved<'a> {
    /// Creates a new instance of `Reserved` from the given initial value.
    ///
    /// ## Panics
    ///
    /// This function panics if it fails to allocate a box for the given `T`.
    fn new<T: 'a>(init: T) -> Self {
        let uninit = Self::uninit(ObjectMeta::of::<T>());

        // SAFETY: This pointer is not aliased anywhere and is properly aligned.
        // It is also know not to be initialized.
        // For zero-sized types, the `write` operation is a no-op.
        unsafe {
            uninit
                .initial_value
                .as_ptr()
                .cast::<MaybeUninit<T>>()
                .write(MaybeUninit::new(init));
        };

        // The initial value is now properly initialized.
        // T is now `T` instead of `MaybeUninit<T>`.

        uninit // now init
    }

    /// Creates a new instance of `Reserved` for a `MaybeUninit<T>`
    /// where `T` is the type of the object described by the given `ObjectMeta`.
    ///
    /// ## Panics
    ///
    /// This function panics if it fails to allocate a box for `T`.
    fn uninit(meta: ObjectMeta) -> Self {
        let ptr = unsafe {
            if meta.layout.size() == 0 {
                // dangling means zero-sized allocation
                NonNull::dangling()
            } else {
                // SAFETY: `T` is not a zero-sized type.
                NonNull::new(alloc(meta.layout)).unwrap_or_else(|| handle_alloc_error(meta.layout))
            }
        };

        // Being uninit is a valid state for a `MaybeUninit<T>`

        Self {
            initial_value: ptr.cast(),
            meta,
            _lifetime: PhantomData,
        }
    }

    /// Consumes `self` and turns it into its inner `T`. The value is written on the
    /// given pointer `target`.
    ///
    /// ## Safety
    ///
    /// `target` must be a valid location for an object of type `T` to be written on.
    unsafe fn consume(self, target: *mut u8) -> ObjectMeta {
        let initial_value = self.initial_value;
        let meta = self.meta;

        // `self` mut not be dropped because this would cause the value at `initial_value`
        // to be dropped even though it was moved.
        mem::forget(self);

        // SAFETY: We are moving the value referenced by `initial_value` to
        // `target`.
        ptr::copy_nonoverlapping(initial_value.as_ptr(), target, meta.layout.size());

        // We have to dealloc the layout though.
        // SAFETY: The `layout.align()` is never null.
        let dangling = NonNull::new_unchecked(meta.layout.align() as _);
        if initial_value != dangling {
            dealloc(initial_value.as_ptr(), meta.layout);
        }

        meta
    }
}

impl Drop for Reserved<'_> {
    fn drop(&mut self) {
        // We have to drop the initial value that was not used.
        if let Some(drop_fn) = self.meta.drop_fn {
            // SAFETY: The value is known to be initialized.
            unsafe { drop_fn(self.initial_value.as_ptr()) };
        }

        // check for zero-sized types
        if self.initial_value != NonNull::dangling() {
            // SAFETY: The layout was used to allocate the `T` in `Self::new` and the value
            // that was here was properly dropped beforehand.
            unsafe { dealloc(self.initial_value.as_ptr(), self.meta.layout) };
        }
    }
}

/// A safe handle to a specific object stored in a specific [`Stadium`]. This handle can
/// be optained from the [`Builder::insert`] function.
///
/// [`Stadium`]: struct.Stadium.html
/// [`Builder::insert`]: struct.Builder.html#method.insert
pub struct Handle<T> {
    /// The id of the stadium this handle exist for.
    id: usize,
    /// The index of the location of the object referenced by this handle.
    index: usize,

    // Invariant T owned by this handle.
    _marker: PhantomData<*mut T>,
}

impl<T> Clone for Handle<T> {
    #[inline(always)]
    fn clone(&self) -> Self {
        Self {
            id: self.id,
            index: self.index,
            _marker: PhantomData,
        }
    }
}

impl<T> Copy for Handle<T> {}

impl<T> fmt::Debug for Handle<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_tuple("Handle").field(&self.index).finish()
    }
}

impl<T> PartialEq for Handle<T> {
    fn eq(&self, other: &Self) -> bool {
        self.id == other.id && self.index == other.index
    }
}

impl<T> Eq for Handle<T> {}

impl<T> Handle<T> {
    /// Converts this [`Handle`] into a [`RawHandle`].
    ///
    /// ## Example
    ///
    /// ```rust
    /// let mut builder = stadium::builder();
    /// let raw_handle = builder.insert("Hello").raw();
    /// ```
    ///
    /// [`Handle`]: struct.Handle.html
    /// [`RawHandle`]: struct.RawHandle.html
    #[inline(always)]
    pub fn raw(self) -> RawHandle {
        RawHandle { index: self.index }
    }
}

/// A handle to a `T` that does not own a `T`. This handle dos not remember
/// what stadium created it.
#[derive(Clone, Copy)]
pub struct RawHandle {
    /// The index of the location of the object referenced by this handle.
    index: usize,
}

impl RawHandle {
    /// Recreate an [`Handle`] from this [`RawHandle`].
    ///
    /// ## Safety
    ///
    ///  * The generic type parameter `T` must be the same as the original [`Handle`]
    /// that was used to produce this [`RawHandle`].
    ///  * The given [`Stadium`] must be the one associated with the original handle.
    ///
    /// ## Example
    ///
    /// ```rust
    /// let mut builder = stadium::builder();
    /// let handle = builder.insert(5i32);
    /// let stadium = builder.build();
    ///
    /// let raw_handle = handle.raw();
    ///
    /// // SAFETY: The handle was given by the builder that created the stadium and was
    /// // created for a `i32`.
    /// let handle = unsafe { raw_handle.trust::<i32>(&stadium) };
    ///
    /// assert_eq!(stadium[handle], 5);
    /// ```
    ///
    /// [`Handle`]: struct.Handle.html
    /// [`RawHandle`]: struct.RawHandle.html
    /// [`Stadium`]: struct.Stadium.html
    #[inline(always)]
    pub unsafe fn trust<T>(self, stadium: &Stadium) -> Handle<T> {
        Handle {
            index: self.index,
            id: stadium.id,
            _marker: PhantomData,
        }
    }

    /// Recreate an [`Handle`] from this [`RawHandle`].
    ///
    /// ## Safety
    ///
    ///  * The generic type parameter `T` must be the same as the original [`Handle`]
    /// that was used to produce this `RawHandle`.
    ///  * The given [`Builder`] must be the one associated with the original handle.
    ///
    /// ## Example
    ///
    /// ```rust
    /// let mut builder = stadium::builder();
    /// let raw_handle = builder.insert(5i32).raw();
    ///
    /// // SAFETY: The handle was given by this builder and was created for a `i32`.
    /// let handle = unsafe { raw_handle.trust_with_builder::<i32>(&builder) };
    ///
    /// let stadium = builder.build();
    /// assert_eq!(stadium[handle], 5);
    /// ```
    ///
    /// [`Handle`]: struct.Handle.html
    /// [`RawHandle`]: struct.RawHandle.html
    /// [`Builder`]: struct.Builder.html
    #[inline(always)]
    pub unsafe fn trust_with_builder<T>(self, builder: &Builder) -> Handle<T> {
        Handle {
            index: self.index,
            id: builder.id,
            _marker: PhantomData,
        }
    }
}