1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
#![no_std]
#![feature(step_trait)]
use core::iter::Step;
use num_traits::int::PrimInt;
use ring_algorithm::gcd;

fn bits<T: PrimInt>(n: T) -> u32 {
    let t_bits = T::zero().count_zeros();
    t_bits - n.leading_zeros()
}

fn sqrt<T: PrimInt>(n: T) -> Option<T> {
    if n < T::zero() {
        return None;
    } else if n.is_zero() {
        return Some(T::zero());
    }
    let s = (bits(n) + 1) / 2;
    let mut x = T::one().unsigned_shl(s);
    loop {
        let t = n / x;
        let nx = (x + t).unsigned_shr(1);
        if nx >= x {
            return Some(x);
        }
        x = nx;
    }
}

fn is_parfect_square<T: PrimInt>(n: T) -> bool {
    // seq 128 | sed 's/\(.*\)/\1 * \1 % 128/' | bc | sort -n | uniq | perl -e 'my @c=(); for(0..128){push(@c, 0);} while(<>){chomp; $c[$_]=1;} print(reverse(@c));'
    const MOD128: u128 = 0b000000010000000100000001000010010000000100000001000000010000100110000001000000010000000100001001000000010000000110000001000010011;
    if let Some(div) = T::from(128) {
        if (1u128 << (n % div).to_u32().unwrap()) & MOD128 == 0 {
            return false;
        }
    }
    let sn = sqrt(n).unwrap();
    n == sn * sn
}

fn foward_step<T: PrimInt + Step>(nn: T, k: T, limit: T, sn: T) -> Option<(T, T)>
where
    for<'x> &'x T: core::ops::Rem<&'x T, Output = T>,
{
    use smallvec::SmallVec;
    const MAX_REMAINDER_SIZE: usize = 64;
    let mut q_remain: SmallVec<[_; MAX_REMAINDER_SIZE]> =
        SmallVec::with_capacity(MAX_REMAINDER_SIZE);
    let k2 = k.unsigned_shl(1);
    let up = limit * k2;
    let mut p0 = sn;
    let mut q0 = T::one();
    let mut q1 = nn - sn * sn;
    for _ in T::zero()..limit.unsigned_shl(2) {
        let b = (sn + p0) / q1;
        let p1 = b * q1 - p0;
        let q2 = if p0 >= p1 {
            q0 + b * (p0 - p1)
        } else {
            q0 - b * (p1 - p0)
        };
        p0 = p1;
        q0 = q1;
        q1 = q2;
        if is_parfect_square(q1) {
            let sq = sqrt(q1).unwrap();
            if !q_remain.iter().any(|q| *q == sq) {
                return Some((sq, p0));
            }
        } else if q1 < up {
            let t = q1 / gcd(k2, q1);
            if t < limit {
                if q_remain.len() >= MAX_REMAINDER_SIZE {
                    return None;
                }
                q_remain.push(t);
            }
        }
    }
    None
}

fn backward_step<T: PrimInt + Step>(mut p0: T, mut q0: T, mut q1: T, limit: T, sn: T) -> Option<T> {
    for _ in T::zero()..limit.unsigned_shl(2) {
        let b = (sn + p0) / q1;
        let p1 = b * q1 - p0;
        let q2 = if p0 >= p1 {
            q0 + b * (p0 - p1)
        } else {
            q0 - b * (p1 - p0)
        };
        if p0 == p1 {
            return Some(q1);
        }
        p0 = p1;
        q0 = q1;
        q1 = q2;
    }
    None
}

fn square_form_factorization_aux<T: PrimInt + Step>(n: T, k: T, limit: T) -> Option<T>
where
    for<'x> &'x T: core::ops::Rem<&'x T, Output = T>,
{
    let nn = n.checked_mul(&k)?;
    let sn = sqrt(nn).unwrap();
    let (sq, p) = foward_step(nn, k, limit, sn)?;
    let p0 = ((sn - p) / sq) * sq + p;
    let q1 = backward_step(p0, sq, (nn - p0 * p0) / sq, limit, sn)?;
    let result = q1 / gcd(q1, k.unsigned_shl(1));
    if result > T::one() {
        Some(result)
    } else {
        None
    }
}

/// Shanks's square forms factorization
///
/// This function returns `Some(divisor)` on success.
/// Recommended input is `n <= T::MAX / (3 * 5 * 7 * 11)`.
///
/// reference
/// * [Shanks's square forms factorization](https://en.wikipedia.org/wiki/Shanks%27s_square_forms_factorization)
/// * Jason E. Gower, Samuel S. Wagstaff Jr., Square form factorization, <https://doi.org/10.1090/S0025-5718-07-02010-8>
/// * [素因数分解アルゴリズム(特にSQUFOF)のこと](https://lemniscus.hatenablog.com/entry/20130226/1361874593)
///```
///use squfof::square_form_factorization;
///let n = 991 * 997;
///let f = square_form_factorization(n).unwrap();
///assert!(f == 991 || f == 997);
///```
pub fn square_form_factorization<T: PrimInt + Step>(n: T) -> Option<T>
where
    for<'x> &'x T: core::ops::Rem<&'x T, Output = T>,
{
    let two = T::from(2).unwrap();
    if n < two {
        return None;
    }
    let prime_table = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53];
    for p in prime_table.iter() {
        if let Some(p) = T::from(*p) {
            if (n % p).is_zero() {
                return Some(p);
            }
        }
    }
    let sn = sqrt(n).unwrap();
    if sn * sn == n {
        return Some(sn);
    }
    let l = two * sqrt(two * sn).unwrap();
    let ks = [
        1,
        3,
        5,
        7,
        11,
        3 * 5,
        3 * 7,
        3 * 11,
        5 * 7,
        5 * 11,
        7 * 11,
        3 * 5 * 7,
        3 * 5 * 11,
        3 * 7 * 11,
        5 * 7 * 11,
        3 * 5 * 7 * 11,
    ];
    for k in ks.iter() {
        if let Some(k) = T::from(*k) {
            let f = square_form_factorization_aux(n, k, l);
            if f.is_some() {
                return f;
            }
        }
    }
    None
}

#[cfg(test)]
mod tests {
    use crate::*;
    #[test]
    fn squfof_u32_1() {
        use is_prime_for_primitive_int::IsPrime;
        use rand::prelude::*;
        let mut rng = rand::thread_rng();
        for _ in 0..1_000_000 {
            let mut n: u32 = rng.gen();
            n >>= 11;
            if n < 2 || n.is_prime() {
                continue;
            }
            let f = square_form_factorization(n).unwrap();
            assert!(n % f == 0);
        }
    }
    #[test]
    fn squfof_u32_2() {
        use is_prime_for_primitive_int::IsPrime;
        use rand::prelude::*;
        let mut rng = rand::thread_rng();
        for _ in 0..1_000_000 {
            let n: u32 = rng.gen();
            if n < 2 || n.is_prime() {
                continue;
            }
            if let Some(f) = square_form_factorization(n) {
                assert!(n % f == 0);
            }
        }
    }
    #[test]
    fn squfof_u64_1() {
        use is_prime_for_primitive_int::IsPrime;
        use rand::prelude::*;
        let mut rng = rand::thread_rng();
        for _ in 0..10_000 {
            let mut n: u64 = rng.gen();
            n >>= 11;
            if n < 2 || n.is_prime() {
                continue;
            }
            let f = square_form_factorization(n).unwrap();
            assert!(n % f == 0);
        }
    }
    #[test]
    fn squfof_u64_2() {
        use is_prime_for_primitive_int::IsPrime;
        use rand::prelude::*;
        let mut rng = rand::thread_rng();
        for _ in 0..10_000 {
            let n: u64 = rng.gen();
            if n < 2 || n.is_prime() {
                continue;
            }
            if let Some(f) = square_form_factorization(n) {
                assert!(n % f == 0);
            }
        }
    }
    #[test]
    fn squfof_pq() {
        use is_prime_for_primitive_int::IsPrime;
        use rand::prelude::*;
        let mut rng = rand::thread_rng();
        for _ in 0..1_000 {
            let mut p: u32;
            let mut q: u32;
            loop {
                p = rng.gen();
                if p.is_prime() {
                    break;
                }
            }
            loop {
                q = rng.gen();
                if q.is_prime() {
                    break;
                }
            }
            let n = p as u128 * q as u128;
            let f = square_form_factorization(n).unwrap();
            assert!(f == p.into() || f == q.into());
        }
    }
}