1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
//! Provides the connection pool for asynchronous SQLx connections.
//!
//! Opening a database connection for each and every operation to the database can quickly
//! become expensive. Furthermore, sharing a database connection between threads and functions
//! can be difficult to express in Rust.
//!
//! A connection pool is a standard technique that can manage opening and re-using connections.
//! Normally it also enforces a maximum number of connections as these are an expensive resource
//! on the database server.
//!
//! SQLx provides a canonical connection pool implementation intended to satisfy the majority
//! of use cases.
//!
//! See [Pool][crate::pool::Pool] for details.
//!
//! Type aliases are provided for each database to make it easier to sprinkle `Pool` through
//! your codebase:
//!
//! * [MssqlPool][crate::mssql::MssqlPool] (MSSQL)
//! * [MySqlPool][crate::mysql::MySqlPool] (MySQL)
//! * [PgPool][crate::postgres::PgPool] (PostgreSQL)
//! * [SqlitePool][crate::sqlite::SqlitePool] (SQLite)
//!
//! # Opening a connection pool
//!
//! A new connection pool with a default configuration can be created by supplying `Pool`
//! with the database driver and a connection string.
//!
//! ```rust,ignore
//! use sqlx::Pool;
//! use sqlx::postgres::Postgres;
//!
//! let pool = Pool::<Postgres>::connect("postgres://").await?;
//! ```
//!
//! For convenience, database-specific type aliases are provided:
//!
//! ```rust,ignore
//! use sqlx::mssql::MssqlPool;
//!
//! let pool = MssqlPool::connect("mssql://").await?;
//! ```
//!
//! # Using a connection pool
//!
//! A connection pool implements [`Executor`][crate::executor::Executor] and can be used directly
//! when executing a query. Notice that only an immutable reference (`&Pool`) is needed.
//!
//! ```rust,ignore
//! sqlx::query("DELETE FROM articles").execute(&pool).await?;
//! ```
//!
//! A connection or transaction may also be manually acquired with
//! [`Pool::acquire`] or
//! [`Pool::begin`].

use self::inner::SharedPool;
use crate::connection::Connection;
use crate::database::Database;
use crate::error::Error;
use crate::transaction::Transaction;
use std::fmt;
use std::future::Future;
use std::sync::Arc;
use std::time::{Duration, Instant};

#[macro_use]
mod executor;

#[macro_use]
mod maybe;

mod connection;
mod inner;
mod options;

pub use self::connection::PoolConnection;
pub(crate) use self::maybe::MaybePoolConnection;
pub use self::options::PoolOptions;

/// An asynchronous pool of SQLx database connections.
///
/// Create a pool with [Pool::connect] or [Pool::connect_with] and then call [Pool::acquire]
/// to get a connection from the pool; when the connection is dropped it will return to the pool
/// so it can be reused.
///
/// You can also pass `&Pool` directly anywhere an `Executor` is required; this will automatically
/// checkout a connection for you.
///
/// See [the module documentation](crate::pool) for examples.
///
/// The pool has a maximum connection limit that it will not exceed; if `acquire()` is called
/// when at this limit and all connections are checked out, the task will be made to wait until
/// a connection becomes available.
///
/// You can configure the connection limit, and other parameters, using [PoolOptions][crate::pool::PoolOptions].
///
/// Calls to `acquire()` are fair, i.e. fulfilled on a first-come, first-serve basis.
///
/// `Pool` is `Send`, `Sync` and `Clone`, so it should be created once at the start of your
/// application/daemon/web server/etc. and then shared with all tasks throughout its lifetime. How
/// best to accomplish this depends on your program architecture.
///
/// In Actix-Web, you can share a single pool with all request handlers using [web::Data].
///
/// Type aliases are provided for each database to make it easier to sprinkle `Pool` through
/// your codebase:
///
/// * [MssqlPool][crate::mssql::MssqlPool] (MSSQL)
/// * [MySqlPool][crate::mysql::MySqlPool] (MySQL)
/// * [PgPool][crate::postgres::PgPool] (PostgreSQL)
/// * [SqlitePool][crate::sqlite::SqlitePool] (SQLite)
///
/// [web::Data]: https://docs.rs/actix-web/2.0.0/actix_web/web/struct.Data.html
///
/// ### Why Use a Pool?
///
/// A single database connection (in general) cannot be used by multiple threads simultaneously
/// for various reasons, but an application or web server will typically need to execute numerous
/// queries or commands concurrently (think of concurrent requests against a web server; many or all
/// of them will probably need to hit the database).
///
/// You could place the connection in a `Mutex` but this will make it a huge bottleneck.
///
/// Naively, you might also think to just open a new connection per request, but this
/// has a number of other caveats, generally due to the high overhead involved in working with
/// a fresh connection. Examples to follow.
///
/// Connection pools facilitate reuse of connections to _amortize_ these costs, helping to ensure
/// that you're not paying for them each time you need a connection.
///
/// ##### 1. Overhead of Opening a Connection
/// Opening a database connection is not exactly a cheap operation.
///
/// For SQLite, it means numerous requests to the filesystem and memory allocations, while for
/// server-based databases it involves performing DNS resolution, opening a new TCP connection and
/// allocating buffers.
///
/// Each connection involves a nontrivial allocation of resources for the database server, usually
/// including spawning a new thread or process specifically to handle the connection, both for
/// concurrency and isolation of faults.
///
/// Additionally, database connections typically involve a complex handshake including
/// authentication, negotiation regarding connection parameters (default character sets, timezones,
/// locales, supported features) and upgrades to encrypted tunnels.
///
/// If `acquire()` is called on a pool with all connections checked out but it is not yet at its
/// connection limit (see next section), then a new connection is immediately opened, so this pool
/// does not _automatically_ save you from the overhead of creating a new connection.
///
/// However, because this pool by design enforces _reuse_ of connections, this overhead cost
/// is not paid each and every time you need a connection. In fact you set the `min_connections`
/// option in [PoolOptions], the pool will create that many connections up-front so that they are
/// ready to go when a request comes in.
///
/// ##### 2. Connection Limits (MySQL, MSSQL, Postgres)
/// Database servers usually place hard limits on the number of connections that it allows open at
/// any given time, to maintain performance targets and prevent excessive allocation of resources,
/// namely RAM.
///
/// These limits have different defaults per database flavor, and may vary between different
/// distributions of the same database, but are typically configurable on server start;
/// if you're paying for managed database hosting then the connection limit will typically vary with
/// your pricing tier.
///
/// In MySQL, the default limit is typically 150, plus 1 which is reserved for a user with the
/// `CONNECTION_ADMIN` privilege so you can still access the server to diagnose problems even
/// with all connections being used.
///
/// In MSSQL the only documentation for the default maximum limit is that it depends on the version
/// and server configuration.
///
/// In Postgres, the default limit is typically 100, minus 3 which are reserved for superusers
/// (putting the default limit for unprivileged users at 97 connections).
///
/// In any case, exceeding these limits results in an error when opening a new connection, which
/// in a web server context will turn into a `500 Internal Server Error` if not handled, but should
/// be turned into either `403 Forbidden` or `429 Too Many Requests` depending on your rate-limiting
/// scheme. However, in a web context, telling a client "go away, maybe try again later" results in
/// a sub-optimal user experience.
///
/// Instead with a connection pool, clients are made to wait in a fair queue for a connection to
/// become available; by using a single connection pool for your whole application, you can ensure
/// that you don't exceed the connection limit of your database server while allowing response
/// time to degrade gracefully at high load.
///
/// Of course, if multiple applications are connecting to the same database server, then you
/// should ensure that the connection limits for all applications add up to your server's maximum
/// connections or less.
///
/// ##### 3. Resource Reuse
/// The first time you execute a query against your database, the database engine must first turn
/// the SQL into an actionable _query plan_ which it may then execute against the database. This
/// involves parsing the SQL query, validating and analyzing it, and in the case of Postgres 12+ and
/// SQLite, generating code to execute the query plan (native or bytecode, respectively).
///
/// These database servers provide a way to amortize this overhead by _preparing_ the query,
/// associating it with an object ID and placing its query plan in a cache to be referenced when
/// it is later executed.
///
/// Prepared statements have other features, like bind parameters, which make them safer and more
/// ergonomic to use as well. By design, SQLx pushes you towards using prepared queries/statements
/// via the [Query][crate::query::Query] API _et al._ and the `query!()` macro _et al._, for
/// reasons of safety, ergonomics, and efficiency.
///
/// However, because database connections are typically isolated from each other in the database
/// server (either by threads or separate processes entirely), they don't typically share prepared
/// statements between connections so this work must be redone _for each connection_.
///
/// As with section 1, by facilitating reuse of connections, `Pool` helps to ensure their prepared
/// statements (and thus cached query plans) can be reused as much as possible, thus amortizing
/// the overhead involved.
///
/// Depending on the database server, a connection will have caches for all kinds of other data as
/// well and queries will generally benefit from these caches being "warm" (populated with data).
pub struct Pool<DB: Database>(pub(crate) Arc<SharedPool<DB>>);

impl<DB: Database> Pool<DB> {
    /// Creates a new connection pool with a default pool configuration and
    /// the given connection URI; and, immediately establishes one connection.
    pub async fn connect(uri: &str) -> Result<Self, Error> {
        PoolOptions::<DB>::new().connect(uri).await
    }

    /// Creates a new connection pool with a default pool configuration and
    /// the given connection options; and, immediately establishes one connection.
    pub async fn connect_with(
        options: <DB::Connection as Connection>::Options,
    ) -> Result<Self, Error> {
        PoolOptions::<DB>::new().connect_with(options).await
    }

    /// Creates a new connection pool with a default pool configuration and
    /// the given connection URI; and, will establish a connections as the pool
    /// starts to be used.
    pub fn connect_lazy(uri: &str) -> Result<Self, Error> {
        PoolOptions::<DB>::new().connect_lazy(uri)
    }

    /// Creates a new connection pool with a default pool configuration and
    /// the given connection options; and, will establish a connections as the pool
    /// starts to be used.
    pub fn connect_lazy_with(options: <DB::Connection as Connection>::Options) -> Self {
        PoolOptions::<DB>::new().connect_lazy_with(options)
    }

    /// Retrieves a connection from the pool.
    ///
    /// Waits for at most the configured connection timeout before returning an error.
    pub fn acquire(&self) -> impl Future<Output = Result<PoolConnection<DB>, Error>> + 'static {
        let shared = self.0.clone();
        async move { shared.acquire().await.map(|conn| conn.attach(&shared)) }
    }

    /// Attempts to retrieve a connection from the pool if there is one available.
    ///
    /// Returns `None` immediately if there are no idle connections available in the pool.
    pub fn try_acquire(&self) -> Option<PoolConnection<DB>> {
        self.0
            .try_acquire()
            .map(|conn| conn.into_live().attach(&self.0))
    }

    /// Retrieves a new connection and immediately begins a new transaction.
    pub async fn begin(&self) -> Result<Transaction<'static, DB>, Error> {
        Ok(Transaction::begin(MaybePoolConnection::PoolConnection(self.acquire().await?)).await?)
    }

    /// Attempts to retrieve a new connection and immediately begins a new transaction if there
    /// is one available.
    pub async fn try_begin(&self) -> Result<Option<Transaction<'static, DB>>, Error> {
        match self.try_acquire() {
            Some(conn) => Transaction::begin(MaybePoolConnection::PoolConnection(conn))
                .await
                .map(Some),

            None => Ok(None),
        }
    }

    /// Ends the use of a connection pool. Prevents any new connections
    /// and will close all active connections when they are returned to the pool.
    ///
    /// Does not resolve until all connections are closed.
    pub async fn close(&self) {
        self.0.close().await;
    }

    /// Returns `true` if [`.close()`][Pool::close] has been called on the pool, `false` otherwise.
    pub fn is_closed(&self) -> bool {
        self.0.is_closed()
    }

    /// Returns the number of connections currently active. This includes idle connections.
    pub fn size(&self) -> u32 {
        self.0.size()
    }

    /// Returns the number of connections active and idle (not in use).
    ///
    /// This will block until the number of connections stops changing for at
    /// least 2 atomic accesses in a row. If the number of idle connections is
    /// changing rapidly, this may run indefinitely.
    pub fn num_idle(&self) -> usize {
        self.0.num_idle()
    }
}

/// Returns a new [Pool] tied to the same shared connection pool.
impl<DB: Database> Clone for Pool<DB> {
    fn clone(&self) -> Self {
        Self(Arc::clone(&self.0))
    }
}

impl<DB: Database> fmt::Debug for Pool<DB> {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt.debug_struct("Pool")
            .field("size", &self.0.size())
            .field("num_idle", &self.0.num_idle())
            .field("is_closed", &self.0.is_closed())
            .field("options", &self.0.options)
            .finish()
    }
}

/// get the time between the deadline and now and use that as our timeout
///
/// returns `Error::PoolTimedOut` if the deadline is in the past
fn deadline_as_timeout<DB: Database>(deadline: Instant) -> Result<Duration, Error> {
    deadline
        .checked_duration_since(Instant::now())
        .ok_or(Error::PoolTimedOut)
}

#[test]
#[allow(dead_code)]
fn assert_pool_traits() {
    fn assert_send_sync<T: Send + Sync>() {}
    fn assert_clone<T: Clone>() {}

    fn assert_pool<DB: Database>() {
        assert_send_sync::<Pool<DB>>();
        assert_clone::<Pool<DB>>();
    }
}