1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
use std::ops::Deref;

use num_traits::Num;
use sprs::errors::SprsError;
use sprs::{CsMatI, CsMatViewI, PermOwnedI, SpIndex};
use suitesparse_ldl_sys::*;

macro_rules! ldl_impl {
    ($int: ty,
     $Symbolic: ident,
     $Numeric: ident,
     $symbolic: ident,
     $numeric: ident,
     $lsolve: ident,
     $dsolve: ident,
     $ltsolve: ident,
     $perm: ident,
     $permt: ident,
     $valid_perm: ident,
     $valid_matrix: ident
     ) => {
        /// Structure holding the symbolic ldlt decomposition computed by
        /// suitesparse's ldl
        #[derive(Debug, Clone)]
        pub struct $Symbolic {
            n: $int,
            lp: Vec<$int>,
            parent: Vec<$int>,
            lnz: Vec<$int>,
            flag: Vec<$int>,
            p: Vec<$int>,
            pinv: Vec<$int>,
        }

        /// Structure holding the numeric ldlt decomposition computed by
        /// suitesparse's ldl
        #[derive(Debug, Clone)]
        pub struct $Numeric {
            symbolic: $Symbolic,
            li: Vec<$int>,
            lx: Vec<f64>,
            d: Vec<f64>,
            y: Vec<f64>,
            pattern: Vec<$int>,
        }

        impl $Symbolic {
            /// Compute the symbolic LDLT decomposition of the given matrix.
            ///
            /// # Panics
            ///
            /// * if the matrix is not symmetric
            pub fn new<N, I>(mat: CsMatViewI<N, I>) -> $Symbolic
            where
                N: Clone + Into<f64>,
                I: SpIndex,
            {
                assert_eq!(mat.rows(), mat.cols());
                let n = mat.rows();
                let perm_check = sprs::DontCheckPerm;
                $Symbolic::new_perm(mat, PermOwnedI::identity(n), perm_check)
            }

            /// Compute the symbolic decomposition L D L^T = P A P^T
            /// where P is a permutation matrix.
            ///
            /// Using a good permutation matrix can reduce the non-zero count in L,
            /// thus making the decomposition and the solves faster.
            ///
            /// # Panics
            ///
            /// * if mat is not symmetric
            /// * if perm does not represent a valid permutation
            pub fn new_perm<N, I>(
                mat: CsMatViewI<N, I>,
                perm: PermOwnedI<I>,
                check_perm: sprs::PermutationCheck,
            ) -> $Symbolic
            where
                N: Clone + Into<f64>,
                I: SpIndex,
            {
                assert!(mat.rows() == mat.cols());
                let n = mat.rows();
                let n_ = n as $int;
                let mat: CsMatI<f64, $int> = mat.to_other_types();
                let ap = mat.indptr().as_ptr();
                let ai = mat.indices().as_ptr();
                let valid_mat = unsafe { $valid_matrix(n_, ap, ai) };
                assert!(valid_mat == 1);
                let perm = perm.to_other_idx_type();
                let p = perm.vec();
                let pinv = perm.inv_vec();
                let mut flag = vec![0; n];
                if check_perm == sprs::CheckPerm {
                    let valid_p = unsafe {
                        $valid_perm(n_, p.as_ptr(), flag.as_mut_ptr())
                    };
                    let valid_pinv = unsafe {
                        $valid_perm(n_, pinv.as_ptr(), flag.as_mut_ptr())
                    };
                    assert!(valid_p == 1 && valid_pinv == 1);
                }
                let mut res = $Symbolic {
                    n: n_,
                    lp: vec![0; n + 1],
                    parent: vec![0; n],
                    lnz: vec![0; n],
                    flag,
                    p,
                    pinv,
                };
                unsafe {
                    $symbolic(
                        n_,
                        ap,
                        ai,
                        res.lp.as_mut_ptr(),
                        res.parent.as_mut_ptr(),
                        res.lnz.as_mut_ptr(),
                        res.flag.as_mut_ptr(),
                        res.p.as_ptr(),
                        res.pinv.as_ptr(),
                    );
                }
                res
            }

            /// The size of the linear system associated with this decomposition
            #[inline]
            pub fn problem_size(&self) -> usize {
                self.n as usize
            }

            /// The number of non-zero entries in L
            #[inline]
            pub fn nnz(&self) -> usize {
                let n = self.problem_size();
                self.lp[n] as usize
            }

            /// Factor a matrix, assuming it shares the same nonzero pattern
            /// as the matrix this factorization was built from.
            ///
            /// # Panics
            ///
            /// If the matrix is not symmetric.
            pub fn factor<N, I>(
                self,
                mat: CsMatViewI<N, I>,
            ) -> Result<$Numeric, SprsError>
            where
                N: Clone + Into<f64>,
                I: SpIndex,
            {
                let n = self.problem_size();
                let nnz = self.nnz();
                let li = vec![0; nnz];
                let lx = vec![0.; nnz];
                let d = vec![0.; n];
                let y = vec![0.; n];
                let pattern = vec![0; n];
                let mut ldl_numeric = $Numeric {
                    symbolic: self,
                    li,
                    lx,
                    d,
                    y,
                    pattern,
                };
                ldl_numeric.update(mat).map(|_| ldl_numeric)
            }
        }

        impl $Numeric {
            /// Compute the numeric LDLT decomposition of the given matrix.
            ///
            /// # Panics
            ///
            /// * if mat is not symmetric
            pub fn new<N, I>(mat: CsMatViewI<N, I>) -> Result<Self, SprsError>
            where
                N: Clone + Into<f64>,
                I: SpIndex,
            {
                let symbolic = $Symbolic::new(mat.view());
                symbolic.factor(mat)
            }

            /// Compute the numeric decomposition L D L^T = P^T A P
            /// where P is a permutation matrix.
            ///
            /// Using a good permutation matrix can reduce the non-zero count in L,
            /// thus making the decomposition and the solves faster.
            ///
            /// # Panics
            ///
            /// * if mat is not symmetric
            pub fn new_perm<N, I>(
                mat: CsMatViewI<N, I>,
                perm: PermOwnedI<I>,
                check_perm: sprs::PermutationCheck,
            ) -> Result<Self, SprsError>
            where
                N: Clone + Into<f64>,
                I: SpIndex,
            {
                let symbolic =
                    $Symbolic::new_perm(mat.view(), perm, check_perm);
                symbolic.factor(mat)
            }

            /// Factor a new matrix, assuming it shares the same nonzero pattern
            /// as the matrix this factorization was built from.
            ///
            /// # Panics
            ///
            /// If the matrix is not symmetric.
            pub fn update<N, I>(
                &mut self,
                mat: CsMatViewI<N, I>,
            ) -> Result<(), SprsError>
            where
                N: Clone + Into<f64>,
                I: SpIndex,
            {
                let mat: CsMatI<f64, $int> = mat.to_other_types();
                let ap = mat.indptr().as_ptr();
                let ai = mat.indices().as_ptr();
                let ax = mat.data().as_ptr();
                assert!(unsafe { $valid_matrix(self.symbolic.n, ap, ai) } != 0);
                let n = self.symbolic.n;
                let ldl_retcode = unsafe {
                    $numeric(
                        n,
                        ap,
                        ai,
                        ax,
                        self.symbolic.lp.as_mut_ptr(),
                        self.symbolic.parent.as_mut_ptr(),
                        self.symbolic.lnz.as_mut_ptr(),
                        self.li.as_mut_ptr(),
                        self.lx.as_mut_ptr(),
                        self.d.as_mut_ptr(),
                        self.y.as_mut_ptr(),
                        self.pattern.as_mut_ptr(),
                        self.symbolic.flag.as_mut_ptr(),
                        self.symbolic.p.as_ptr(),
                        self.symbolic.pinv.as_ptr(),
                    )
                };
                if ldl_retcode != n {
                    // FIXME should return the value of ldl_retcode
                    // but this would need breaking change in sprs error type
                    return Err(SprsError::SingularMatrix);
                }
                Ok(())
            }

            /// Solve the system A x = rhs
            pub fn solve<'a, N, V>(&self, rhs: &V) -> Vec<N>
            where
                N: 'a + Copy + Num + Into<f64> + From<f64>,
                V: Deref<Target = [N]>,
            {
                assert!(self.symbolic.n as usize == rhs.len());
                let mut x = vec![0.; rhs.len()];
                let mut y = x.clone();
                let rhs: Vec<f64> = rhs.iter().map(|&x| x.into()).collect();
                unsafe {
                    $perm(
                        self.symbolic.n,
                        x.as_mut_ptr(),
                        rhs.as_ptr(),
                        self.symbolic.p.as_ptr(),
                    );
                    $lsolve(
                        self.symbolic.n,
                        x.as_mut_ptr(),
                        self.symbolic.lp.as_ptr(),
                        self.li.as_ptr(),
                        self.lx.as_ptr(),
                    );
                    $dsolve(self.symbolic.n, x.as_mut_ptr(), self.d.as_ptr());
                    $ltsolve(
                        self.symbolic.n,
                        x.as_mut_ptr(),
                        self.symbolic.lp.as_ptr(),
                        self.li.as_ptr(),
                        self.lx.as_ptr(),
                    );
                    $permt(
                        self.symbolic.n,
                        y.as_mut_ptr(),
                        x.as_ptr(),
                        self.symbolic.p.as_ptr(),
                    );
                }
                y.iter().map(|&x| x.into()).collect()
            }

            /// The size of the linear system associated with this decomposition
            #[inline]
            pub fn problem_size(&self) -> usize {
                self.symbolic.problem_size()
            }

            /// The number of non-zero entries in L
            #[inline]
            pub fn nnz(&self) -> usize {
                self.symbolic.nnz()
            }
        }
    };
}

ldl_impl!(
    ldl_int,
    LdlSymbolic,
    LdlNumeric,
    ldl_symbolic,
    ldl_numeric,
    ldl_lsolve,
    ldl_dsolve,
    ldl_ltsolve,
    ldl_perm,
    ldl_permt,
    ldl_valid_perm,
    ldl_valid_matrix
);

ldl_impl!(
    ldl_long,
    LdlLongSymbolic,
    LdlLongNumeric,
    ldl_l_symbolic,
    ldl_l_numeric,
    ldl_l_lsolve,
    ldl_l_dsolve,
    ldl_l_ltsolve,
    ldl_l_perm,
    ldl_l_permt,
    ldl_l_valid_perm,
    ldl_l_valid_matrix
);

#[cfg(test)]
mod tests {
    use super::{LdlLongSymbolic, LdlSymbolic};
    use sprs::{CsMatI, PermOwnedI};

    #[test]
    fn ldl_symbolic() {
        let mat = CsMatI::new_csc(
            (4, 4),
            vec![0, 2, 4, 6, 8],
            vec![0, 3, 1, 2, 1, 2, 0, 3],
            vec![1., 2., 21., 6., 6., 2., 2., 8.],
        );
        let perm = PermOwnedI::new(vec![0, 2, 1, 3]);
        let check_perm = sprs::CheckPerm;
        let ldlt = LdlSymbolic::new_perm(mat.view(), perm, check_perm)
            .factor(mat.view())
            .unwrap();
        let b = vec![9., 60., 18., 34.];
        let x0 = vec![1., 2., 3., 4.];
        let x = ldlt.solve(&b);
        assert_eq!(x, x0);
    }

    #[test]
    fn ldl_long_symbolic() {
        let mat = CsMatI::new_csc(
            (4, 4),
            vec![0, 2, 4, 6, 8],
            vec![0, 3, 1, 2, 1, 2, 0, 3],
            vec![1., 2., 21., 6., 6., 2., 2., 8.],
        );
        let perm = PermOwnedI::new(vec![0, 2, 1, 3]);
        let check_perm = sprs::CheckPerm;
        let ldlt = LdlLongSymbolic::new_perm(mat.view(), perm, check_perm)
            .factor(mat.view())
            .unwrap();
        let b = vec![9., 60., 18., 34.];
        let x0 = vec![1., 2., 3., 4.];
        let x = ldlt.solve(&b);
        assert_eq!(x, x0);
    }
}