1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
use crate::clause::{Clause, ClauseDB};
use crate::config::Config;
use crate::eliminator::Eliminator;
use crate::propagator::AssignStack;
use crate::state::{Stat, State};
use crate::traits::*;
use crate::types::*;
use crate::var::VarDB;
use std::fs;
use std::io::{BufRead, BufReader};

/// Normal results returned by Solver.
#[derive(Debug, PartialEq)]
pub enum Certificate {
    SAT(Vec<i32>),
    UNSAT,
}

/// Abnormal termination flags.
#[derive(Debug)]
pub enum SolverException {
    // StateUNSAT = 0,
    // StateSAT,
    Inconsistent,
    OutOfMemory,
    TimeOut,
    UndescribedError,
}

/// The return type of `Solver::solve`.
/// This captures the following three cases:
/// * `Certificate::SAT` -- solved with a satisfiable assignment set,
/// * `Certificate::UNSAT` -- proved that it's an unsatisfiable problem, and
/// * `SolverException::*` -- caused by a bug
pub type SolverResult = Result<Certificate, SolverException>;

/// SAT solver consisting of 5 sub modules.
#[derive(Debug)]
pub struct Solver {
    pub asgs: AssignStack, // Assignment
    pub cdb: ClauseDB,     // Clauses
    pub elim: Eliminator,  // Clause/Variable Elimination
    pub state: State,      // misc data
    pub vdb: VarDB,        // Variables
}

impl SatSolverIF for Solver {
    fn new(config: &Config, cnf: &CNFDescription) -> Solver {
        let nv = cnf.num_of_variables as usize;
        let nc = cnf.num_of_clauses as usize;
        let elim = Eliminator::new(config, nv);
        let state = State::new(config, cnf.clone());
        Solver {
            asgs: AssignStack::new(nv),
            cdb: ClauseDB::new(config, nv, nc),
            elim,
            state,
            vdb: VarDB::new(nv),
        }
    }
    /// # Examples
    ///
    /// ```
    /// use splr::traits::SatSolverIF;
    /// use splr::config::Config;
    /// use splr::solver::{Solver, Certificate};
    ///
    /// let config = Config::from("tests/sample.cnf");
    /// if let Ok(mut s) = Solver::build(&config) {
    ///     let res = s.solve();
    ///     assert!(res.is_ok());
    ///     assert_ne!(res.unwrap(), Certificate::UNSAT);
    /// }
    ///```
    fn solve(&mut self) -> SolverResult {
        let Solver {
            ref mut asgs,
            ref mut cdb,
            ref mut elim,
            ref mut state,
            ref mut vdb,
        } = self;
        if !state.ok {
            return Ok(Certificate::UNSAT);
        }
        if cdb.check_size().is_err() {
            return Err(SolverException::OutOfMemory);
        }
        // NOTE: splr doesn't deal with assumptions.
        // s.root_level = 0;
        state.num_solved_vars = asgs.len();
        state.progress_header();
        state.progress(cdb, vdb, Some("initialization phase"));
        state.flush("loading...");
        let use_pre_processor = true;
        let use_pre_processing_eliminator = true;
        if use_pre_processor {
            state.flush("phasing...");
            elim.activate();
            elim.prepare(cdb, vdb, true);
            // run simple preprocessor
            for vi in 1..vdb.len() {
                let v = &mut vdb[vi];
                if v.assign != BOTTOM {
                    continue;
                }
                match (v.pos_occurs.len(), v.neg_occurs.len()) {
                    (_, 0) => asgs.enqueue_null(v, TRUE),
                    (0, _) => asgs.enqueue_null(v, FALSE),
                    (p, m) if m * 10 < p => {
                        v.phase = TRUE;
                        elim.enqueue_var(vdb, vi, false);
                    }
                    (p, m) if p * 10 < m => {
                        v.phase = FALSE;
                        elim.enqueue_var(vdb, vi, false);
                    }
                    _ => (),
                }
            }
            if !elim.enable || !use_pre_processing_eliminator {
                elim.stop(cdb, vdb);
            }
            // state.progress(cdb, vdb, Some("phase-in"));
        }
        if elim.enable && use_pre_processing_eliminator {
            state.flush("simplifying...");
            // if 20_000_000 < state.target.num_of_clauses {
            //     state.elim_eliminate_grow_limit = 0;
            //     state.elim_eliminate_loop_limit = 1_000_000;
            //     state.elim_subsume_loop_limit = 2_000_000;
            // }
            if cdb.simplify(asgs, elim, state, vdb).is_err() {
                // Why inconsistent? Because the CNF contains a conflict, not an error!
                // Or out of memory.
                state.progress(cdb, vdb, None);
                state.ok = false;
                if cdb.check_size().is_err() {
                    return Err(SolverException::OutOfMemory);
                }
                return Ok(Certificate::UNSAT);
            }
            for v in &mut vdb[1..] {
                if v.assign != BOTTOM || v.is(Flag::ELIMINATED) {
                    continue;
                }
                match (v.pos_occurs.len(), v.neg_occurs.len()) {
                    (_, 0) => (),
                    (0, _) => (),
                    (p, m) if m * 10 < p => v.phase = TRUE,
                    (p, m) if p * 10 < m => v.phase = FALSE,
                    _ => (),
                }
            }
        }
        state.progress(cdb, vdb, None);
        match search(asgs, cdb, elim, state, vdb) {
            Ok(true) => {
                state.progress(cdb, vdb, None);
                let mut result = Vec::new();
                for (vi, v) in vdb[0..].iter().enumerate().take(state.num_vars + 1).skip(1) {
                    match v.assign {
                        TRUE => result.push(vi as i32),
                        FALSE => result.push(0 - vi as i32),
                        _ => result.push(0),
                    }
                }
                elim.extend_model(&mut result);
                asgs.cancel_until(vdb, 0);
                Ok(Certificate::SAT(result))
            }
            Ok(false) => {
                state.progress(cdb, vdb, None);
                asgs.cancel_until(vdb, 0);
                Ok(Certificate::UNSAT)
            }
            Err(_) => {
                asgs.cancel_until(vdb, 0);
                state.progress(cdb, vdb, Some("ERROR"));
                state.ok = false;
                if cdb.check_size().is_err() {
                    return Err(SolverException::OutOfMemory);
                }
                if state.is_timeout() {
                    return Err(SolverException::TimeOut);
                }
                Err(SolverException::Inconsistent)
            }
        }
    }
    /// # Examples
    ///
    /// ```
    /// use splr::traits::SatSolverIF;
    /// use splr::config::Config;
    /// use splr::solver::Solver;
    ///
    /// let config = Config::from("tests/sample.cnf");
    /// assert!(Solver::build(&config).is_ok());
    ///```
    fn build(config: &Config) -> std::io::Result<Solver> {
        let fs = fs::File::open(&config.cnf_filename)?;
        let mut rs = BufReader::new(fs);
        let mut buf = String::new();
        let mut nv: usize = 0;
        let mut nc: usize = 0;
        loop {
            buf.clear();
            match rs.read_line(&mut buf) {
                Ok(0) => break,
                Ok(_k) => {
                    let mut iter = buf.split_whitespace();
                    if iter.next() == Some("p") && iter.next() == Some("cnf") {
                        if let Some(v) = iter.next().map(|s| s.parse::<usize>().ok().unwrap()) {
                            if let Some(c) = iter.next().map(|s| s.parse::<usize>().ok().unwrap()) {
                                nv = v;
                                nc = c;
                                break;
                            }
                        }
                    }
                    continue;
                }
                Err(e) => panic!("{}", e),
            }
        }
        let cnf = CNFDescription {
            num_of_variables: nv,
            num_of_clauses: nc,
            pathname: config.cnf_filename.to_str().unwrap().to_string(),
        };
        let mut s: Solver = Solver::new(config, &cnf);
        loop {
            buf.clear();
            match rs.read_line(&mut buf) {
                Ok(0) => break,
                Ok(_) => {
                    if buf.starts_with('c') {
                        continue;
                    }
                    let iter = buf.split_whitespace();
                    let mut v: Vec<Lit> = Vec::new();
                    for s in iter {
                        match s.parse::<i32>() {
                            Ok(0) => break,
                            Ok(val) => v.push(Lit::from_int(val)),
                            Err(_) => (),
                        }
                    }
                    if !v.is_empty() && s.add_unchecked_clause(&mut v) == None {
                        s.state.ok = false;
                    }
                }
                Err(e) => panic!("{}", e),
            }
        }
        debug_assert_eq!(s.vdb.len() - 1, nv);
        Ok(s)
    }
    // renamed from clause_new
    fn add_unchecked_clause(&mut self, v: &mut Vec<Lit>) -> Option<ClauseId> {
        let Solver {
            ref mut asgs,
            ref mut cdb,
            ref mut elim,
            ref mut vdb,
            ..
        } = self;
        debug_assert!(asgs.level() == 0);
        if v.iter().any(|l| vdb.assigned(*l) != BOTTOM) {
            cdb.certificate_add(v);
        }
        v.sort_unstable();
        let mut j = 0;
        let mut l_ = NULL_LIT; // last literal; [x, x.negate()] means tautology.
        for i in 0..v.len() {
            let li = v[i];
            let sat = vdb.assigned(li);
            if sat == TRUE || li.negate() == l_ {
                return Some(NULL_CLAUSE);
            } else if sat != FALSE && li != l_ {
                v[j] = li;
                j += 1;
                l_ = li;
            }
        }
        v.truncate(j);
        match v.len() {
            0 => None, // Empty clause is UNSAT.
            1 => {
                asgs.enqueue_null(&mut vdb[v[0].vi()], v[0].lbool());
                Some(NULL_CLAUSE)
            }
            _ => {
                let cid = cdb.new_clause(&v, 0, false);
                elim.add_cid_occur(vdb, cid, &mut cdb[cid], true);
                Some(cid)
            }
        }
    }
}

/// main loop; returns `true` for SAT, `false` for UNSAT.
fn search(
    asgs: &mut AssignStack,
    cdb: &mut ClauseDB,
    elim: &mut Eliminator,
    state: &mut State,
    vdb: &mut VarDB,
) -> Result<bool, SolverError> {
    let mut a_decision_was_made = false;
    state.rst.initialize_luby();
    loop {
        let ci = asgs.propagate(cdb, state, vdb);
        vdb.update_stat(state);
        state.stats[Stat::Propagation] += 1;
        if ci == NULL_CLAUSE {
            if state.num_vars <= asgs.len() + state.num_eliminated_vars {
                return Ok(true);
            }
            // DYNAMIC FORCING RESTART based on LBD values, updated by conflict
            state.last_asg = asgs.len();
            if state.rst.force_restart() {
                state.stats[Stat::Restart] += 1;
                asgs.cancel_until(vdb, state.root_level);
            } else if asgs.level() == 0 {
                if cdb.simplify(asgs, elim, state, vdb).is_err() {
                    debug_assert!(false, "interal error by simplify");
                    return Err(SolverError::Inconsistent);
                }
                state.num_solved_vars = asgs.len();
            }
            if !asgs.remains() {
                let vi = asgs.select_var(&vdb);
                let p = vdb[vi].phase;
                asgs.uncheck_assume(vdb, Lit::from_var(vi, p));
                state.stats[Stat::Decision] += 1;
                a_decision_was_made = true;
            }
        } else {
            state.rst.update_luby();
            state.stats[Stat::Conflict] += 1;
            if a_decision_was_made {
                a_decision_was_made = false;
            } else {
                state.stats[Stat::NoDecisionConflict] += 1;
            }
            if asgs.level() == state.root_level {
                analyze_final(asgs, state, vdb, &cdb[ci]);
                return Ok(false);
            }
            handle_conflict_path(asgs, cdb, elim, state, vdb, ci)?;
        }
    }
}

fn handle_conflict_path(
    asgs: &mut AssignStack,
    cdb: &mut ClauseDB,
    elim: &mut Eliminator,
    state: &mut State,
    vdb: &mut VarDB,
    ci: ClauseId,
) -> MaybeInconsistent {
    let ncnfl = state.stats[Stat::Conflict]; // total number
    if ncnfl % 5000 == 0 && vdb.activity_decay < vdb.activity_decay_max {
        vdb.activity_decay += 0.01;
    }
    state.rst.after_restart += 1;
    // DYNAMIC BLOCKING RESTART based on ASG, updated on conflict path
    // If we can settle this conflict w/o restart, solver will get a big progress.
    if 0 < state.last_asg {
        state.rst.asg.update(asgs.len());
        state.last_asg = 0;
    }
    if state.rst.block_restart() {
        state.stats[Stat::BlockRestart] += 1;
    }
    let cl = asgs.level();
    let bl = analyze(asgs, cdb, state, vdb, ci);
    let new_learnt = &mut state.new_learnt;
    asgs.cancel_until(vdb, bl.max(state.root_level));
    let learnt_len = new_learnt.len();
    if learnt_len == 1 {
        // dump to certified even if it's a literal.
        cdb.certificate_add(new_learnt);
        asgs.uncheck_enqueue(vdb, new_learnt[0], NULL_CLAUSE);
    } else {
        state.stats[Stat::Learnt] += 1;
        let lbd = vdb.compute_lbd(&new_learnt, &mut state.lbd_temp);
        let l0 = new_learnt[0];
        let cid = cdb.attach(state, vdb, lbd);
        elim.add_cid_occur(vdb, cid, &mut cdb[cid], true);
        if 0 < state.config.dump_interval {
            state.c_lvl.update(cl as f64);
            state.b_lvl.update(bl as f64);
        }
        if lbd <= 2 {
            state.stats[Stat::NumLBD2] += 1;
        }
        if learnt_len == 2 {
            state.stats[Stat::NumBin] += 1;
            state.stats[Stat::NumBinLearnt] += 1;
        }
        asgs.uncheck_enqueue(vdb, l0, cid);
        state.rst.lbd.update(lbd);
        state.stats[Stat::SumLBD] += lbd;
    }
    cdb.scale_activity();
    vdb.scale_activity();
    if 0 < state.config.dump_interval && ncnfl % state.config.dump_interval == 0 {
        state.development.push((
            ncnfl,
            (state.num_solved_vars + state.num_eliminated_vars) as f64
                / state.target.num_of_variables as f64,
            state.stats[Stat::Restart] as f64,
            state.stats[Stat::BlockRestart] as f64,
            state.rst.asg.trend().min(10.0),
            state.rst.lbd.trend().min(10.0),
        ));
    }
    if ncnfl % 10_000 == 0 {
        adapt_parameters(asgs, cdb, elim, state, vdb, ncnfl)?;
        if state.is_timeout() {
            return Err(SolverError::Inconsistent);
        }
    }
    if ((state.use_chan_seok && !cdb.glureduce && cdb.first_reduction < cdb.num_learnt)
        || (cdb.glureduce
            && state.rst.cur_restart * cdb.next_reduction <= state.stats[Stat::Conflict]))
        && 0 < cdb.num_learnt
    {
        state.rst.cur_restart = ((ncnfl as f64) / (cdb.next_reduction as f64)) as usize + 1;
        cdb.reduce(state, vdb);
    }
    Ok(())
}

#[allow(dead_code)]
fn adapt_parameters(
    asgs: &mut AssignStack,
    cdb: &mut ClauseDB,
    elim: &mut Eliminator,
    state: &mut State,
    vdb: &mut VarDB,
    nconflict: usize,
) -> MaybeInconsistent {
    let switch = 100_000;
    if !state.config.without_deep_search && !state.rst.use_luby_restart
    /* && switch <= nconflict */
    {
        let stopped = state.stats[Stat::SolvedRecord] == state.num_solved_vars;
        // && state.record.vali[LogUsizeId::Binclause] == state.stats[Stat::NumBinLearnt]
        if stopped {
            state.slack_duration += 1;
        } else if 0 < state.slack_duration && state.stagnated {
            state.slack_duration *= -1;
        } else {
            state.slack_duration = 0;
        }
        let stagnated = ((state.num_vars - state.num_solved_vars)
            .next_power_of_two()
            .trailing_zeros() as isize)
            < state.slack_duration;
        // && (((state.num_vars - state.num_solved_vars) as f64).log(2.0)
        //     / (state.c_lvl.get() / state.b_lvl.get()).sqrt().max(1.0)
        //     <= state.stagnation as f64)
        if !state.stagnated && stagnated {
            state.stats[Stat::Stagnation] += 1;
        }
        state.stagnated = stagnated;
    }
    state.stats[Stat::SolvedRecord] = state.num_solved_vars;
    if !state.rst.use_luby_restart && state.rst.adaptive_restart && !state.stagnated {
        let moving: f64 = 0.04;
        let spring: f64 = 0.02;
        let margin: f64 = 0.20;
        let too_few: usize = 4;
        let too_many: usize = 400;
        // restart_threshold
        let nr = state.stats[Stat::Restart] - state.stats[Stat::RestartRecord];
        state.stats[Stat::RestartRecord] = state.stats[Stat::Restart];
        if state.rst.lbd.threshold <= state.config.restart_threshold + margin && nr < too_few {
            state.rst.lbd.threshold += moving;
        } else if state.config.restart_threshold - margin <= state.rst.lbd.threshold
            && too_many < nr
        {
            state.rst.lbd.threshold -= moving;
        } else if too_few <= nr && nr <= too_many {
            state.rst.lbd.threshold -=
                (state.rst.lbd.threshold - state.config.restart_threshold) * spring;
        }
        // restart_blocking
        let nb = state.stats[Stat::BlockRestart] - state.stats[Stat::BlockRestartRecord];
        state.stats[Stat::BlockRestartRecord] = state.stats[Stat::BlockRestart];
        if state.config.restart_blocking - margin <= state.rst.asg.threshold && nb < too_few {
            state.rst.asg.threshold -= moving;
        } else if state.rst.asg.threshold <= state.config.restart_blocking + margin && too_many < nb
        {
            state.rst.asg.threshold += moving;
        } else if too_few <= nb && nb <= too_many {
            state.rst.asg.threshold -=
                (state.rst.asg.threshold - state.config.restart_blocking) * spring;
        }
    }
    if nconflict == switch {
        state.flush("exhaustive eliminator activated...");
        asgs.cancel_until(vdb, 0);
        state.adapt_strategy(cdb, vdb);
        if elim.enable {
            cdb.reset();
            elim.activate();
            cdb.simplify(asgs, elim, state, vdb)?;
        }
    }
    state.progress(cdb, vdb, None);
    if !state.config.without_deep_search {
        state.rst.restart_step = 50 + 40_000 * (state.stagnated as usize);
        if state.stagnated {
            state.flush(&format!("deep searching ({})...", state.slack_duration));
            state.rst.next_restart += 80_000;
        }
    }
    Ok(())
}

fn analyze(
    asgs: &mut AssignStack,
    cdb: &mut ClauseDB,
    state: &mut State,
    vdb: &mut VarDB,
    confl: ClauseId,
) -> usize {
    let learnt = &mut state.new_learnt;
    learnt.clear();
    learnt.push(0);
    let dl = asgs.level();
    let mut cid = confl;
    let mut p = NULL_LIT;
    let mut ti = asgs.len() - 1; // trail index
    let mut path_cnt = 0;
    state.last_dl.clear();
    loop {
        // println!("analyze {}", p.int());
        unsafe {
            debug_assert_ne!(cid, NULL_CLAUSE);
            let c = &mut cdb[cid] as *mut Clause;
            debug_assert!(!(*c).is(Flag::DEAD));
            if (*c).is(Flag::LEARNT) {
                cdb.bump_activity(cid);
                if 2 < (*c).rank {
                    let nlevels = vdb.compute_lbd(&(*c).lits, &mut state.lbd_temp);
                    if nlevels + 1 < (*c).rank {
                        if (*c).rank <= cdb.lbd_frozen_clause {
                            (*c).turn_on(Flag::JUST_USED);
                        }
                        if state.use_chan_seok && nlevels < cdb.co_lbd_bound {
                            (*c).turn_off(Flag::LEARNT);
                            cdb.num_learnt -= 1;
                        } else {
                            (*c).rank = nlevels;
                        }
                    }
                }
            }
            if p != NULL_LIT && (*c).lits.len() == 2 && (*c).lits[1] == p {
                (*c).lits.swap(0, 1);
            }
            // println!("- handle {}", cid.fmt());
            for q in &(*c).lits[((p != NULL_LIT) as usize)..] {
                let vi = q.vi();
                vdb.bump_activity(vi);
                asgs.update_order(vdb, vi);
                let v = &mut vdb[vi];
                let lvl = v.level;
                debug_assert!(!v.is(Flag::ELIMINATED));
                debug_assert!(v.assign != BOTTOM);
                if 0 < lvl && !state.an_seen[vi] {
                    state.an_seen[vi] = true;
                    if dl <= lvl {
                        // println!("- flag for {} which level is {}", q.int(), lvl);
                        path_cnt += 1;
                        if v.reason != NULL_CLAUSE && cdb[v.reason].is(Flag::LEARNT) {
                            state.last_dl.push(*q);
                        }
                    } else {
                        // println!("- push {} to learnt, which level is {}", q.int(), lvl);
                        learnt.push(*q);
                    }
                } else {
                    // if !state.an_seen[vi] {
                    //     println!("- ignore {} because it was flagged", q.int());
                    // } else {
                    //     println!("- ignore {} because its level is {}", q.int(), lvl);
                    // }
                }
            }
            // set the index of the next literal to ti
            while !state.an_seen[asgs.trail[ti].vi()] {
                // println!("- skip {} because it isn't flagged", asgs.trail[ti].int());
                ti -= 1;
            }
            p = asgs.trail[ti];
            let next_vi = p.vi();
            cid = vdb[next_vi].reason;
            // println!("- move to flagged {}, which reason is {}; num path: {}",
            //          next_vi, path_cnt - 1, cid.fmt());
            state.an_seen[next_vi] = false;
            path_cnt -= 1;
            if path_cnt <= 0 {
                break;
            }
            ti -= 1;
        }
    }
    learnt[0] = p.negate();
    // println!("- appending {}, the result is {:?}", learnt[0].int(), vec2int(learnt));
    simplify_learnt(asgs, cdb, state, vdb)
}

fn simplify_learnt(
    asgs: &mut AssignStack,
    cdb: &mut ClauseDB,
    state: &mut State,
    vdb: &mut VarDB,
) -> usize {
    let State {
        ref mut new_learnt,
        ref mut an_seen,
        ..
    } = state;
    let mut to_clear: Vec<Lit> = vec![new_learnt[0]];
    let mut levels = vec![false; asgs.level() + 1];
    for l in &new_learnt[1..] {
        to_clear.push(*l);
        levels[vdb[l.vi()].level] = true;
    }
    new_learnt.retain(|l| {
        vdb[l.vi()].reason == NULL_CLAUSE
            || !redundant_lit(cdb, vdb, an_seen, *l, &mut to_clear, &levels)
    });
    if new_learnt.len() < 30 {
        minimize_with_bi_clauses(cdb, vdb, &mut state.lbd_temp, new_learnt);
    }
    // glucose heuristics
    let lbd = vdb.compute_lbd(new_learnt, &mut state.lbd_temp);
    while let Some(l) = state.last_dl.pop() {
        let vi = l.vi();
        if cdb[vdb[vi].reason].rank < lbd {
            vdb.bump_activity(vi);
            asgs.update_order(vdb, vi);
        }
    }
    // find correct backtrack level from remaining literals
    let mut level_to_return = 0;
    if 1 < new_learnt.len() {
        let mut max_i = 1;
        level_to_return = vdb[new_learnt[max_i].vi()].level;
        for (i, l) in new_learnt.iter().enumerate().skip(2) {
            let lv = vdb[l.vi()].level;
            if level_to_return < lv {
                level_to_return = lv;
                max_i = i;
            }
        }
        new_learnt.swap(1, max_i);
    }
    for l in &to_clear {
        an_seen[l.vi()] = false;
    }
    level_to_return
}

fn redundant_lit(
    cdb: &mut ClauseDB,
    vdb: &VarDB,
    seen: &mut [bool],
    l: Lit,
    clear: &mut Vec<Lit>,
    levels: &[bool],
) -> bool {
    let mut stack = Vec::new();
    stack.push(l);
    let top = clear.len();
    while let Some(sl) = stack.pop() {
        let cid = vdb[sl.vi()].reason;
        let c = &mut cdb[cid];
        if (*c).lits.len() == 2 && vdb.assigned((*c).lits[0]) == FALSE {
            (*c).lits.swap(0, 1);
        }
        for q in &(*c).lits[1..] {
            let vi = q.vi();
            let lv = vdb[vi].level;
            if 0 < lv && !seen[vi] {
                if vdb[vi].reason != NULL_CLAUSE && levels[lv as usize] {
                    seen[vi] = true;
                    stack.push(*q);
                    clear.push(*q);
                } else {
                    for v in &clear[top..] {
                        seen[v.vi()] = false;
                    }
                    clear.truncate(top);
                    return false;
                }
            }
        }
    }
    true
}

fn analyze_final(asgs: &AssignStack, state: &mut State, vdb: &VarDB, c: &Clause) {
    let mut seen = vec![false; state.num_vars + 1];
    state.conflicts.clear();
    if asgs.level() == 0 {
        return;
    }
    for l in &c.lits {
        let vi = l.vi();
        if 0 < vdb[vi].level {
            state.an_seen[vi] = true;
        }
    }
    let end = if asgs.level() <= state.root_level {
        asgs.len()
    } else {
        asgs.num_at(state.root_level)
    };
    for l in &asgs.trail[asgs.num_at(0)..end] {
        let vi = l.vi();
        if seen[vi] {
            if vdb[vi].reason == NULL_CLAUSE {
                state.conflicts.push(l.negate());
            } else {
                for l in &c.lits[(c.lits.len() != 2) as usize..] {
                    let vi = l.vi();
                    if 0 < vdb[vi].level {
                        seen[vi] = true;
                    }
                }
            }
        }
        seen[vi] = false;
    }
}

fn minimize_with_bi_clauses(cdb: &ClauseDB, vdb: &VarDB, temp: &mut [usize], vec: &mut Vec<Lit>) {
    let nlevels = vdb.compute_lbd(vec, temp);
    if 6 < nlevels {
        return;
    }
    let key = temp[0] + 1;
    for l in &vec[1..] {
        temp[l.vi() as usize] = key;
    }
    let l0 = vec[0];
    let mut nsat = 0;
    for w in &cdb.watcher[l0.negate() as usize] {
        let c = &cdb[w.c];
        if c.lits.len() != 2 {
            continue;
        }
        debug_assert!(c.lits[0] == l0 || c.lits[1] == l0);
        let other = c.lits[(c.lits[0] == l0) as usize];
        let vi = other.vi();
        if temp[vi] == key && vdb.assigned(other) == TRUE {
            nsat += 1;
            temp[vi] -= 1;
        }
    }
    if 0 < nsat {
        temp[l0.vi()] = key;
        vec.retain(|l| temp[l.vi()] == key);
    }
    temp[0] = key;
}