1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
//! # Spline interpolation made easy.
//!
//! This crate exposes splines for which each sections can be interpolated independently of each
//! other – i.e. it’s possible to interpolate with a linear interpolator on one section and then
//! switch to a cubic Hermite interpolator for the next section.
//!
//! Most of the crate consists of three types:
//!
//!   - [`Key`], which represents the control points by which the spline must pass.
//!   - [`Interpolation`], the type of possible interpolation for each segment.
//!   - [`Spline`], a spline from which you can *sample* points by interpolation.
//!
//! When adding control points, you add new sections. Two control points define a section – i.e.
//! it’s not possible to define a spline without at least two control points. Every time you add a
//! new control point, a new section is created. Each section is assigned an interpolation mode that
//! is picked from its lower control point.
//!
//! # Quickly create splines
//!
//! ```
//! use splines::{Interpolation, Key, Spline};
//!
//! let start = Key::new(0., 0., Interpolation::Linear);
//! let end = Key::new(1., 10., Interpolation::default());
//! let spline = Spline::from_vec(vec![start, end]);
//! ```
//!
//! You will notice that we used `Interpolation::Linear` for the first key. The first key `start`’s
//! interpolation will be used for the whole segment defined by those two keys. The `end`’s
//! interpolation won’t be used. You can in theory use any [`Interpolation`] you want for the last
//! key. We use the default one because we don’t care.
//!
//! # Interpolate values
//!
//! The whole purpose of splines is to interpolate discrete values to yield continuous ones. This is
//! usually done with the `Spline::sample` method. This method expects the interpolation parameter
//! (often, this will be the time of your simulation) as argument and will yield an interpolated
//! value.
//!
//! If you try to sample in out-of-bounds interpolation parameter, you’ll get no value.
//!
//! ```
//! # use splines::{Interpolation, Key, Spline};
//! # let start = Key::new(0., 0., Interpolation::Linear);
//! # let end = Key::new(1., 10., Interpolation::Linear);
//! # let spline = Spline::from_vec(vec![start, end]);
//! assert_eq!(spline.sample(0.), Some(0.));
//! assert_eq!(spline.clamped_sample(1.), 10.);
//! assert_eq!(spline.sample(1.1), None);
//! ```
//!
//! It’s possible that you want to get a value even if you’re out-of-bounds. This is especially
//! important for simulations / animations. Feel free to use the `Spline::clamped_interpolation` for
//! that purpose.
//!
//! ```
//! # use splines::{Interpolation, Key, Spline};
//! # let start = Key::new(0., 0., Interpolation::Linear);
//! # let end = Key::new(1., 10., Interpolation::Linear);
//! # let spline = Spline::from_vec(vec![start, end]);
//! assert_eq!(spline.clamped_sample(-0.9), 0.); // clamped to the first key
//! assert_eq!(spline.clamped_sample(1.1), 10.); // clamped to the last key
//! ```
//! # Features and customization
//!
//! This crate was written with features baked in and hidden behind feature-gates. The idea is that
//! the default configuration (i.e. you just add `"spline = …"` to your `Cargo.toml`) will always
//! give you the minimal, core and raw concepts of what splines, keys / knots and interpolation
//! modes are. However, you might want more. Instead of letting other people do the extra work to
//! add implementations for very famous and useful traits – and do it in less efficient way, because
//! they wouldn’t have access to the internals of this crate, it’s possible to enable features in an
//! ad hoc way.
//!
//! This mechanism is not final and this is currently an experiment to see how people like it or
//! not. It’s especially important to see how it copes with the documentation.
//!
//! So here’s a list of currently supported features and how to enable them:
//!
//!   - **Serialization / deserialization.**
//!     + This feature implements both the `Serialize` and `Deserialize` traits from `serde` for all
//!       types exported by this crate.
//!     + Enable with the `"serialization"` feature.
//!   - **[cgmath](https://crates.io/crates/cgmath) implementors
//!     + Adds some usefull implementations of `Interpolate` for some cgmath types.
//!     + Enable with the `"impl-cgmath"` feature.
//!   - **Standard library / no stdandard library**
//!     + It’s possible to compile against the standard library or go on your own without it.
//!     + Compiling with the standard library is enabled by default.
//!     + Use `defaut-features = []` in your `Cargo.toml` to disable.
//!     + Enable explicitly with the `"std"` feataure.

#![cfg_attr(not(feature = "std"), no_std)]
#![cfg_attr(not(feature = "std"), feature(alloc))]
#![cfg_attr(not(feature = "std"), feature(core_intrinsics))]

// on no_std, we also need the alloc crate for Vec
#[cfg(not(feature = "std"))] extern crate alloc;

#[cfg(feature = "impl-cgmath")] extern crate cgmath;

#[cfg(feature = "serialization")] extern crate serde;
#[cfg(feature = "serialization")] #[macro_use] extern crate serde_derive;

#[cfg(feature = "impl-cgmath")] use cgmath::{InnerSpace, Quaternion, Vector2, Vector3, Vector4};

#[cfg(feature = "std")] use std::cmp::Ordering;
#[cfg(feature = "std")] use std::f32::consts;
#[cfg(feature = "std")] use std::ops::{Add, Div, Mul, Sub};

#[cfg(not(feature = "std"))] use alloc::vec::Vec;
#[cfg(not(feature = "std"))] use core::cmp::Ordering;
#[cfg(not(feature = "std"))] use core::f32::consts;
#[cfg(not(feature = "std"))] use core::ops::{Add, Div, Mul, Sub};

/// A spline control point.
///
/// This type associates a value at a given interpolation parameter value. It also contains an
/// interpolation hint used to determine how to interpolate values on the segment defined by this
/// key and the next one – if existing.
#[derive(Copy, Clone, Debug)]
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
#[cfg_attr(feature = "serialization", serde(rename_all = "snake_case"))]
pub struct Key<T> {
  /// Interpolation parameter at which the [`Key`] should be reached.
  pub t: f32,
  /// Held value.
  pub value: T,
  /// Interpolation mode.
  pub interpolation: Interpolation
}

impl<T> Key<T> {
  /// Create a new key.
  pub fn new(t: f32, value: T, interpolation: Interpolation) -> Self {
    Key {
      t: t,
      value: value,
      interpolation: interpolation
    }
  }
}

/// Interpolation mode.
#[derive(Copy, Clone, Debug)]
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
#[cfg_attr(feature = "serialization", serde(rename_all = "snake_case"))]
pub enum Interpolation {
  /// Hold a [`Key`] until the time passes the normalized step threshold, in which case the next
  /// key is used.
  ///
  /// *Note: if you set the threshold to `0.5`, the first key will be used until the time is half
  /// between the two keys; the second key will be in used afterwards. If you set it to `1.0`, the
  /// first key will be kept until the next key. Set it to `0.` and the first key will never be
  /// used.*
  Step(f32),
  /// Linear interpolation between a key and the next one.
  Linear,
  /// Cosine interpolation between a key and the next one.
  Cosine,
  /// Catmull-Rom interpolation.
  CatmullRom
}

impl Default for Interpolation {
  /// `Interpolation::Linear` is the default.
  fn default() -> Self {
    Interpolation::Linear
  }
}

/// Spline curve used to provide interpolation between control points (keys).
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
pub struct Spline<T>(Vec<Key<T>>);

impl<T> Spline<T> {
  /// Create a new spline out of keys. The keys don’t have to be sorted even though it’s recommended
  /// to provide ascending sorted ones (for performance purposes).
  pub fn from_vec(mut keys: Vec<Key<T>>) -> Self {
    keys.sort_by(|k0, k1| k0.t.partial_cmp(&k1.t).unwrap_or(Ordering::Less));

    Spline(keys)
  }

  /// Create a new spline by consuming an `Iterater<Item = Key<T>>`. They keys don’t have to be
  /// sorted.
  ///
  /// # Note on iterators
  ///
  /// It’s valid to use any iterator that implements `Iterator<Item = Key<T>>`. However, you should
  /// use `Spline::from_vec` if you are passing a `Vec<_>`. This will remove dynamic allocations.
  pub fn from_iter<I>(iter: I) -> Self where I: Iterator<Item = Key<T>> {
    Self::from_vec(iter.collect())
  }

  /// Retrieve the keys of a spline.
  pub fn keys(&self) -> &[Key<T>] {
    &self.0
  }

  /// Sample a spline at a given time.
  ///
  /// The current implementation, based on immutability, cannot perform in constant time. This means
  /// that sampling’s processing complexity is currently *O(log n)*. It’s possible to achieve *O(1)*
  /// performance by using a slightly different spline type. If you are interested by this feature,
  /// an implementation for a dedicated type is foreseen yet not started yet.
  ///
  /// # Return
  ///
  /// `None` if you try to sample a value at a time that has no key associated with. That can also
  /// happen if you try to sample between two keys with a specific interpolation mode that make the
  /// sampling impossible. For instance, `Interpolate::CatmullRom` requires *four* keys. If you’re
  /// near the beginning of the spline or its end, ensure you have enough keys around to make the
  /// sampling.
  pub fn sample(&self, t: f32) -> Option<T> where T: Interpolate {
    let keys = &self.0;
    let i = search_lower_cp(keys, t)?;
    let cp0 = &keys[i];

    match cp0.interpolation {
      Interpolation::Step(threshold) => {
        let cp1 = &keys[i+1];
        let nt = normalize_time(t, cp0, cp1);
        Some(if nt < threshold { cp0.value } else { cp1.value })
      },
      Interpolation::Linear => {
        let cp1 = &keys[i+1];
        let nt = normalize_time(t, cp0, cp1);

        Some(Interpolate::lerp(cp0.value, cp1.value, nt))
      },
      Interpolation::Cosine => {
        let cp1 = &keys[i+1];
        let nt = normalize_time(t, cp0, cp1);
        let cos_nt = {
          #[cfg(feature = "std")]
          {
            (1. - f32::cos(nt * consts::PI)) * 0.5
          }

          #[cfg(not(feature = "std"))]
          {
            use core::intrinsics::cosf32;
            unsafe { (1. - cosf32(nt * consts::PI)) * 0.5 }
          }
        };

        Some(Interpolate::lerp(cp0.value, cp1.value, cos_nt))
      },
      Interpolation::CatmullRom => {
        // We need at least four points for Catmull Rom; ensure we have them, otherwise, return
        // None.
        if i == 0 || i >= keys.len() - 2 {
          None
        } else {
          let cp1 = &keys[i+1];
          let cpm0 = &keys[i-1];
          let cpm1 = &keys[i+2];
          let nt = normalize_time(t, cp0, cp1);

          Some(Interpolate::cubic_hermite((cpm0.value, cpm0.t), (cp0.value, cp0.t), (cp1.value, cp1.t), (cpm1.value, cpm1.t), nt))
        }
      }
    }
  }

  /// Sample a spline at a given time with clamping.
  ///
  /// # Return
  ///
  /// If you sample before the first key or after the last one, return the first key or the last
  /// one, respectively. Otherwise, behave the same way as `Spline::sample`.
  ///
  /// # Panic
  ///
  /// This function panics if you have no key.
  pub fn clamped_sample(&self, t: f32) -> T where T: Interpolate {
    let first = self.0.first().unwrap();
    let last = self.0.last().unwrap();

    if t <= first.t {
      return first.value;
    } else if t >= last.t {
      return last.value;
    }

    self.sample(t).unwrap()
  }
}

/// Iterator over spline keys.
///
/// This iterator type assures you to iterate over sorted keys.
pub struct Iter<'a, T> where T: 'a {
  anim_param: &'a Spline<T>,
  i: usize
}

impl<'a, T> Iterator for Iter<'a, T> {
  type Item = &'a Key<T>;

  fn next(&mut self) -> Option<Self::Item> {
    let r = self.anim_param.0.get(self.i);

    if let Some(_) = r {
      self.i += 1;
    }

    r
  }
}

impl<'a, T> IntoIterator for &'a Spline<T> {
  type Item = &'a Key<T>;
  type IntoIter = Iter<'a, T>;

  fn into_iter(self) -> Self::IntoIter {
    Iter {
      anim_param: self,
      i: 0
    }
  }
}

/// Keys that can be interpolated in between. Implementing this trait is required to perform
/// sampling on splines.
pub trait Interpolate: Copy {
  /// Linear interpolation.
  fn lerp(a: Self, b: Self, t: f32) -> Self;
  /// Cubic hermite interpolation.
  ///
  /// Default to `Self::lerp`.
  fn cubic_hermite(_: (Self, f32), a: (Self, f32), b: (Self, f32), _: (Self, f32), t: f32) -> Self {
    Self::lerp(a.0, b.0, t)
  }
}

impl Interpolate for f32 {
  fn lerp(a: Self, b: Self, t: f32) -> Self {
    a * (1. - t) + b * t
  }

  fn cubic_hermite(x: (Self, f32), a: (Self, f32), b: (Self, f32), y: (Self, f32), t: f32) -> Self {
    cubic_hermite(x, a, b, y, t)
  }
}

#[cfg(feature = "impl-cgmath")]
impl Interpolate for Vector2<f32> {
  fn lerp(a: Self, b: Self, t: f32) -> Self {
    a.lerp(b, t)
  }

  fn cubic_hermite(x: (Self, f32), a: (Self, f32), b: (Self, f32), y: (Self, f32), t: f32) -> Self {
    cubic_hermite(x, a, b, y, t)
  }
}

#[cfg(feature = "impl-cgmath")]
impl Interpolate for Vector3<f32> {
  fn lerp(a: Self, b: Self, t: f32) -> Self {
    a.lerp(b, t)
  }

  fn cubic_hermite(x: (Self, f32), a: (Self, f32), b: (Self, f32), y: (Self, f32), t: f32) -> Self {
    cubic_hermite(x, a, b, y, t)
  }
}

#[cfg(feature = "impl-cgmath")]
impl Interpolate for Vector4<f32> {
  fn lerp(a: Self, b: Self, t: f32) -> Self {
    a.lerp(b, t)
  }

  fn cubic_hermite(x: (Self, f32), a: (Self, f32), b: (Self, f32), y: (Self, f32), t: f32) -> Self {
    cubic_hermite(x, a, b, y, t)
  }
}

#[cfg(feature = "impl-cgmath")]
impl Interpolate for Quaternion<f32> {
  fn lerp(a: Self, b: Self, t: f32) -> Self {
    a.nlerp(b, t)
  }
}

// Default implementation of Interpolate::cubic_hermit.
pub(crate) fn cubic_hermite<T>(x: (T, f32), a: (T, f32), b: (T, f32), y: (T, f32), t: f32) -> T
    where T: Copy + Add<Output = T> + Sub<Output = T> + Mul<f32, Output = T> + Div<f32, Output = T> {
  // time stuff
  let t2 = t * t;
  let t3 = t2 * t;
  let two_t3 = 2. * t3;
  let three_t2 = 3. * t2;

  // tangents
  let m0 = (b.0 - x.0) / (b.1 - x.1);
	let m1 = (y.0 - a.0) / (y.1 - a.1);

  a.0 * (two_t3 - three_t2 + 1.) + m0 * (t3 - 2. * t2 + t) + b.0 * (-two_t3 + three_t2) + m1 * (t3 - t2)
}

// Normalize a time ([0;1]) given two control points.
#[inline(always)]
pub(crate) fn normalize_time<T>(t: f32, cp: &Key<T>, cp1: &Key<T>) -> f32 {
  assert!(cp1.t != cp.t, "overlapping keys");

  (t - cp.t) / (cp1.t - cp.t)
}

// Find the lower control point corresponding to a given time.
fn search_lower_cp<T>(cps: &[Key<T>], t: f32) -> Option<usize> {
  let mut i = 0;
  let len = cps.len();

  if len < 2 {
    return None;
  }

  loop {
    let cp = &cps[i];
    let cp1 = &cps[i+1];

    if t >= cp1.t {
      if i >= len - 2 {
        return None;
      }

      i += 1;
    } else if t < cp.t {
      if i == 0 {
        return None;
      }

      i -= 1;
    } else {
      break; // found
    }
  }

  Some(i)
}