1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
#![cfg_attr(all(not(test), not(feature = "std")), no_std)]

use core::cell::UnsafeCell;
use core::mem::{self, MaybeUninit};
use core::ptr;
use core::sync::atomic::{self, AtomicBool, AtomicU8, AtomicUsize, Ordering};

/// An extremely simple spinlock, locking by compare-and-swapping a single flag and repeating.
pub struct RawMutex {
    locked: AtomicBool,
}
unsafe impl lock_api::RawMutex for RawMutex {
    const INIT: Self = RawMutex { locked: AtomicBool::new(false) };

    type GuardMarker = lock_api::GuardSend;

    fn lock(&self) {
        while !self.try_lock() {
            atomic::spin_loop_hint();
        }
    }

    fn try_lock(&self) -> bool {
        self.locked.compare_exchange(false, true, Ordering::Acquire, Ordering::Relaxed).is_ok()
    }
    fn unlock(&self) {
        let prev = self.locked.fetch_and(false, Ordering::Release);
        debug_assert!(prev, "unlocking when not locked");
    }
}


#[derive(Debug)]
pub struct RawRwLock {
    // The state of the rwlock is composed as follows:
    //
    // 1. The base bits, all the way up to ARCH_POINTER_WIDTH - 4, are used to count the number of
    //    current locks. These also include the one occasional intent or write lock, and the reason
    //    for this is to allow for more simple atomic operations, since x86 has no instrucion doing
    //    both bit tests and addition.
    // 2. RWLOCK_STATE_ACTIVE_WRITER_BIT indicates that the lock currently holds a writer. When
    //    acquiring a shared read lock, the counter may be incremented arbitrarily, but acquiring a
    //    read lock must always fail when this bit is set.
    // 3. RWLOCK_STATE_ACTIVE_INTENT_BIT denotes that the rwlock currently holds an intent lock.
    //    Attaining a read lock does ignores this bit, since intent locks only conflict with write
    //    locks, until they are upgraded to write locks.
    // 4. RWLOCK_STATE_PENDING_WRITER_BIT can be set at any time by a failed attempt at obtaining a
    //    write lock, due to read locks already being present. In order to prevent write lock
    //    starvation, new read locks cannot be acquired if this bit is set.
    state: AtomicUsize,
}
impl Clone for RawRwLock {
    fn clone(&self) -> Self {
        Self {
            state: AtomicUsize::new(0),
        }
    }
}

const RWLOCK_STATE_ACTIVE_WRITER_BIT: usize = 1 << (mem::size_of::<usize>() * 8 - 1);
const RWLOCK_STATE_ACTIVE_INTENT_BIT: usize = 1 << (mem::size_of::<usize>() * 8 - 2);

const RWLOCK_STATE_PENDING_WRITER_BIT: usize = 1 << (mem::size_of::<usize>() * 8 - 3);

const RWLOCK_STATE_EXTRA_MASK: usize = RWLOCK_STATE_ACTIVE_WRITER_BIT | RWLOCK_STATE_ACTIVE_INTENT_BIT | RWLOCK_STATE_PENDING_WRITER_BIT;
const RWLOCK_STATE_COUNT_MASK: usize = !RWLOCK_STATE_EXTRA_MASK;

impl RawRwLock {
    fn try_lock_exclusive_raw(&self) -> (bool, bool) {
        let prev_state = self.state.fetch_or(RWLOCK_STATE_PENDING_WRITER_BIT, Ordering::AcqRel);
        let current_state = prev_state | RWLOCK_STATE_PENDING_WRITER_BIT;
        let was_previously_pending = prev_state & RWLOCK_STATE_PENDING_WRITER_BIT != 0;

        if prev_state & RWLOCK_STATE_ACTIVE_INTENT_BIT != 0 {
            debug_assert_eq!(prev_state & RWLOCK_STATE_ACTIVE_WRITER_BIT, 0, "simultaneously active INTENT and exclusive locks during exclusive lock acquisition");
            return (false, was_previously_pending);
        }
        if prev_state & RWLOCK_STATE_ACTIVE_WRITER_BIT != 0 {
            debug_assert_eq!(prev_state & RWLOCK_STATE_ACTIVE_INTENT_BIT, 0, "simultaneously active intent and EXCLUSIVE locks during exclusive lock acquisition");
            return (false, was_previously_pending);
        }

        let success = self.state.compare_exchange(current_state, (current_state + 1) | RWLOCK_STATE_ACTIVE_WRITER_BIT, Ordering::Acquire, Ordering::Relaxed).is_ok();
        (success, was_previously_pending)
    }
}

unsafe impl lock_api::RawRwLock for RawRwLock {
    const INIT: Self = RawRwLock { state: AtomicUsize::new(0) };

    type GuardMarker = lock_api::GuardSend;

    fn lock_shared(&self) {
        while !self.try_lock_shared() {
            atomic::spin_loop_hint();
        }
    }
    fn try_lock_shared(&self) -> bool {
        let prev = self.state.fetch_add(1, Ordering::Acquire);

        if prev & RWLOCK_STATE_PENDING_WRITER_BIT != 0 {
            // don't starve writers; writers are prioritized over readers
            return false;
        }

        if prev & RWLOCK_STATE_ACTIVE_WRITER_BIT != 0 {
            let new_prev = self.state.fetch_sub(1, Ordering::Release);
            debug_assert_ne!(new_prev & !(RWLOCK_STATE_ACTIVE_WRITER_BIT | RWLOCK_STATE_ACTIVE_INTENT_BIT), 0, "overflow when subtracting rwlock counter");
            return false;
        }
        true
    }
    fn lock_exclusive(&self) {
        while !self.try_lock_exclusive() {
            atomic::spin_loop_hint();
        }

    }
    fn try_lock_exclusive(&self) -> bool {
        let (success, was_previously_pending) = self.try_lock_exclusive_raw();

        if !was_previously_pending {
            self.state.fetch_and(!RWLOCK_STATE_PENDING_WRITER_BIT, Ordering::Release);
        }

        success
    }

    // releases a read lock
    fn unlock_shared(&self) {
        let prev = self.state.fetch_sub(1, Ordering::Release);
        debug_assert_ne!(prev & RWLOCK_STATE_COUNT_MASK, 0, "corrupted state flags because of subtraction overflow, when release a shared lock");
        debug_assert_eq!(prev & RWLOCK_STATE_ACTIVE_WRITER_BIT, 0, "releasing a shared lock while a write lock was held");
    }
    // releases a write lock
    fn unlock_exclusive(&self) {
        let prev = self.state.fetch_sub(RWLOCK_STATE_ACTIVE_WRITER_BIT | 1, Ordering::Release);
        debug_assert_ne!(prev & RWLOCK_STATE_ACTIVE_WRITER_BIT, 0, "corrupted state flags because a write lock release was tried when a write lock was not held");
        debug_assert_eq!(prev & RWLOCK_STATE_ACTIVE_INTENT_BIT, 0, "releasing a write lock when an intent lock was held");
    }
}
unsafe impl lock_api::RawRwLockDowngrade for RawRwLock {
    // downgrades an exclusive lock to a shared lock
    fn downgrade(&self) {
        let prev = self.state.fetch_and(!RWLOCK_STATE_ACTIVE_WRITER_BIT, Ordering::Release);
        debug_assert_ne!(prev & RWLOCK_STATE_ACTIVE_WRITER_BIT, 0, "downgrading a write lock to a read lock when no write lock was held");
        debug_assert_eq!(prev & RWLOCK_STATE_ACTIVE_INTENT_BIT, 0, "downgrading a write lock to a read lock when an intent lock was held");
    }
}
unsafe impl lock_api::RawRwLockUpgrade for RawRwLock {
    // acquires an intent lock
    fn lock_upgradable(&self) {
        while !self.try_lock_upgradable() {
            atomic::spin_loop_hint();
        }
    }
    // tries to acquire an intent lock
    fn try_lock_upgradable(&self) -> bool {
        use lock_api::RawRwLock as _;

        // Begin by acquiring a read lock.
        if !self.try_lock_shared() { return false };

        // At this stage we know that it is completely impossible for a write lock to exist, since
        // try_lock_shared() would return false in that case. Hence, all we have to do is setting
        // the active intent bit, and returning false if it was already set.
        let prev = self.state.fetch_or(RWLOCK_STATE_ACTIVE_INTENT_BIT, Ordering::AcqRel);
        debug_assert_eq!(prev & RWLOCK_STATE_ACTIVE_WRITER_BIT, 0, "acquiring an intent lock while an exclusive lock was held");

        prev & RWLOCK_STATE_ACTIVE_INTENT_BIT == 0
    }
    // releases an intent lock
    fn unlock_upgradable(&self) {
        // assumes that the lock is properly managed by lock_api; if RWLOCK_STATE_ACTIVE_INTENT_BIT
        // is not set and this method is called, the CPU will arithmetically borrow the bits below,
        // potentially corrupting the rwlock state entirely.
        let prev = self.state.fetch_sub(RWLOCK_STATE_ACTIVE_INTENT_BIT | 1, Ordering::Release);
        debug_assert_ne!(prev & RWLOCK_STATE_ACTIVE_INTENT_BIT, 0, "releasing an intent lock while no intent lock was held");
        debug_assert_eq!(prev & RWLOCK_STATE_ACTIVE_WRITER_BIT, 0, "releasing an intent lock while an exclusive lock was held");
    }
    // upgrades an intent lock into an exclusive lock
    fn upgrade(&self) {
        while !self.try_upgrade() {
            atomic::spin_loop_hint();
        }
    }

    // tries to upgrade an intent lock into an exclusive lock
    fn try_upgrade(&self) -> bool {
        // Since intent locks conflict with write locks, all we have do here is to flip the "intent
        // active" and the "writer active" bits.
        let prev = self.state.fetch_xor(RWLOCK_STATE_ACTIVE_INTENT_BIT | RWLOCK_STATE_ACTIVE_WRITER_BIT, Ordering::Release);

        debug_assert_ne!(prev & RWLOCK_STATE_ACTIVE_INTENT_BIT, 0, "upgrading an intent lock into an exclusive lock when no intent lock was held");
        debug_assert_eq!(prev & RWLOCK_STATE_ACTIVE_WRITER_BIT, 0, "upgrading an intent lock into an exclusive lock when an exclusive lock was held");

        prev & RWLOCK_STATE_COUNT_MASK == 1
    }
}
unsafe impl lock_api::RawRwLockUpgradeDowngrade for RawRwLock {
    // downgrades an exclusive lock to an intent lock
    fn downgrade_to_upgradable(&self) {
        let prev = self.state.fetch_xor(RWLOCK_STATE_ACTIVE_WRITER_BIT | RWLOCK_STATE_ACTIVE_INTENT_BIT, Ordering::Release);
        debug_assert_ne!(prev & RWLOCK_STATE_ACTIVE_WRITER_BIT, 0, "downgrading a write lock to an intent lock when no write lock was held");
        debug_assert_eq!(prev & RWLOCK_STATE_ACTIVE_INTENT_BIT, 0, "downgrading a write lock to an intent lock when an intent lock was held");
    }
    // downgrades an intent lock into a shared lock
    fn downgrade_upgradable(&self) {
        let prev = self.state.fetch_and(!RWLOCK_STATE_ACTIVE_INTENT_BIT, Ordering::Release);
        debug_assert_eq!(prev & RWLOCK_STATE_ACTIVE_WRITER_BIT, 0, "downgrading an intent lock while a write lock was held");
        debug_assert_ne!(prev & RWLOCK_STATE_ACTIVE_INTENT_BIT, 0, "downgrading an intent lock where no intent lock was held");
    }
}

pub type Mutex<T> = lock_api::Mutex<RawMutex, T>;
pub type MutexGuard<'a, T> = lock_api::MutexGuard<'a, RawMutex, T>;
pub type MappedMutexGuard<'a, T> = lock_api::MappedMutexGuard<'a, RawMutex, T>;
pub type RwLock<T> = lock_api::RwLock<RawRwLock, T>;
pub type RwLockReadGuard<'a, T> = lock_api::RwLockReadGuard<'a, RawRwLock, T>;
pub type RwLockWriteGuard<'a, T> = lock_api::RwLockWriteGuard<'a, RawRwLock, T>;
pub type RwLockUpgradableReadGuard<'a, T> = lock_api::RwLockUpgradableReadGuard<'a, RawRwLock, T>;
pub type MappedRwLockReadGuard<'a, T> = lock_api::MappedRwLockReadGuard<'a, RawRwLock, T>;
pub type MappedRwLockWriteGuard<'a, T> = lock_api::MappedRwLockWriteGuard<'a, RawRwLock, T>;
pub type ReentrantMutex<T, G> = lock_api::ReentrantMutex<RawRwLock, G, T>;
pub type ReentrantMutexGuard<'a, T, G> = lock_api::ReentrantMutexGuard<'a, RawRwLock, G, T>;

/// A synchronization primitive which initializes a value lazily, once. Since this also includes a
/// value, it is a bit more like `Once` from `parking_lot` or `spin`.
pub struct Once<T> {
    state: AtomicU8,
    value: UnsafeCell<MaybeUninit<T>>,
}

impl<T> Drop for Once<T> {
    fn drop(&mut self) {
        // we do not have to do any complex state manipulation here, since a mutable reference
        // guarantees that only there is an exclusive borrow to this struct.
        if *self.state.get_mut() != OnceState::Initialized as u8 {
            // nothing to drop
            return;
        }
        unsafe { ptr::drop_in_place(self.value.get() as *mut T) }
    }
}

unsafe impl<T: Send + Sync> Send for Once<T> {}
unsafe impl<T: Send + Sync> Sync for Once<T> {}

#[repr(u8)]
#[derive(Clone, Copy, Debug, Eq, Hash, PartialEq)]
pub enum OnceState {
    Uninitialized = 0,
    Initializing = 1,
    Initialized = 2,
}

impl<T> Once<T> {
    pub const fn new() -> Self {
        Self {
            state: AtomicU8::new(OnceState::Uninitialized as u8),
            value: UnsafeCell::new(MaybeUninit::uninit()),
        }
    }
    pub const fn uninitialized() -> Self {
        Self::new()
    }
    pub const fn initialized(value: T) -> Self {
        Self {
            state: AtomicU8::new(OnceState::Initialized as u8),
            value: UnsafeCell::new(MaybeUninit::new(value)),
        }
    }
    pub fn initialize(&self, value: T) -> Result<(), T> {
        match self.state.compare_exchange(OnceState::Uninitialized as u8, OnceState::Initializing as u8, Ordering::AcqRel, Ordering::Relaxed) {
            Ok(_) => {
                unsafe { ptr::write(self.value.get(), MaybeUninit::new(value)) };
                let old = self.state.swap(OnceState::Initialized as u8, Ordering::Release);
                debug_assert_eq!(old, OnceState::Initializing as u8, "once state was modified when setting state to \"initialized\"");
                Ok(())
            }
            Err(_) => Err(value),
        }
    }
    pub fn try_call_once<'a, F>(&'a self, init: F) -> Result<&'a T, F>
    where
        F: FnOnce() -> T,
    {
        match self.state.compare_exchange(OnceState::Uninitialized as u8, OnceState::Initializing as u8, Ordering::AcqRel, Ordering::Relaxed) {
            Ok(_) => unsafe {
                ptr::write(self.value.get(), MaybeUninit::new(init()));
                let old = self.state.swap(OnceState::Initialized as u8, Ordering::Release);
                debug_assert_eq!(old, OnceState::Initializing as u8, "once state was modified when setting state to \"initialized\"");
                Ok(&*(self.value.get() as *const T))
            }
            Err(other_state) if other_state == OnceState::Initialized as u8 => unsafe {
                Ok(&*(self.value.get() as *const T))
            }

            #[cfg(debug_assertions)]
            Err(other_state) if other_state == OnceState::Initializing as u8 => Err(init),

            #[cfg(debug_assertions)]
            Err(_) => unreachable!(),

            #[cfg(not(debug_assertions))]
            Err(_) => Err(init),
        }
    }
    pub fn call_once<'a, F>(&'a self, mut init: F) -> &'a T
    where
        F: FnOnce() -> T,
    {
        loop {
            match self.try_call_once(init) {
                Ok(reference) => return reference,
                Err(init_again) => {
                    init = init_again;
                    continue;
                }
            }
        }
    }
    pub fn wait<'a>(&'a self) -> &'a T {
        loop {
            match self.try_get() {
                Some(t) => return t,
                None => continue,
            }
        }
    }
    pub fn try_get<'a>(&'a self) -> Option<&'a T> {
        let state = self.state.load(Ordering::Acquire);

        if state != OnceState::Initialized as u8 {
            return None;
        }
        Some(unsafe { &*(self.value.get() as *const T) })
    }
    pub fn state(&self) -> OnceState {
        match self.state.load(Ordering::Relaxed) {
            0 => OnceState::Uninitialized,
            1 => OnceState::Initializing,
            2 => OnceState::Initialized,
            _ => unreachable!(),
        }
    }
}
#[cfg(any(test, feature = "std"))]
impl<T: std::panic::UnwindSafe> std::panic::UnwindSafe for Once<T> {}

#[cfg(any(test, feature = "std"))]
impl<T: std::panic::RefUnwindSafe> std::panic::RefUnwindSafe for Once<T> {}

#[cfg(test)]
mod tests {
    use super::{Once, OnceState, RwLock, RwLockUpgradableReadGuard, RwLockWriteGuard, Mutex};

    use std::{sync::Arc, thread};

    #[test]
    fn singlethread_mutex() {
        let data = Mutex::new(2);
        assert_eq!(*data.lock(), 2);
        *data.lock() = 3;
        assert_eq!(*data.lock(), 3);
    }

    #[test]
    fn multithread_mutex() {
        let data = Arc::new(Mutex::new(2));
        let main_thread = thread::current();

        assert_eq!(*data.lock(), 2);

        {
            let data = Arc::clone(&data);
            thread::spawn(move || {
                *data.lock() = 3;
                main_thread.unpark();
            });
        }

        thread::park();
        assert_eq!(*data.lock(), 3);
    }
    #[test]
    fn multithread_rwlock() {
        // TODO: More complex test, or maybe this is done in an integration test.
        let data = Arc::new(RwLock::new(Vec::<u64>::new()));
        assert_eq!(&*data.read(), &[]);

        let threads = (0..4).map(|index| {
            let data = Arc::clone(&data);
            thread::spawn(move || {
                let mut write_guard = data.write();
                write_guard.push(index);
            })
        }).collect::<Vec<_>>();


        for thread in threads {
            thread.join().unwrap();
        }
        let mut write_guard = data.write();
        write_guard.sort();

        let read_guard = RwLockWriteGuard::downgrade(write_guard);
        assert_eq!(&*read_guard, &[0, 1, 2, 3]);
    }

    #[test]
    fn singlethread_rwlock() {
        let data = RwLock::new(1);

        let intent_lock = data.upgradable_read();
        {
            let lock1 = data.read();
            let lock2 = data.read();
            let lock3 = data.read();
            
            assert_eq!(*lock1, 1);
            assert_eq!(*lock2, 1);
            assert_eq!(*lock3, 1);
            assert_eq!(*intent_lock, 1);
        }
        let mut write_lock = RwLockUpgradableReadGuard::upgrade(intent_lock);
        *write_lock = 2;

        let intent_lock_again = RwLockWriteGuard::downgrade_to_upgradable(write_lock);
        let lock1 = {
            let lock1 = data.read();
            let lock2 = data.read();

            assert_eq!(*intent_lock_again, 2);
            assert_eq!(*lock1, 2);
            assert_eq!(*lock2, 2);
            lock1
        };
        assert!(data.try_write().is_none());
        let lock3 = RwLockUpgradableReadGuard::downgrade(intent_lock_again);
        assert_eq!(*lock3, 2);
        assert_eq!(*lock1, 2);
    }
    #[test]
    fn singlethread_once() {
        let once = Once::<String>::uninitialized();
        assert_eq!(once.state(), OnceState::Uninitialized);
        assert_eq!(once.try_get(), None);
        once.initialize(String::from("Hello, world!")).expect("once initialization failed");
        assert_eq!(once.state(), OnceState::Initialized);
        assert_eq!(once.try_get().map(String::as_str), Some("Hello, world!"));
        assert_eq!(once.wait(), "Hello, world!");
        assert!(once.initialize(String::from("Goodbye, world!")).is_err());
    }
    #[test]
    fn once_preinit() {
        let once = Once::<String>::initialized(String::from("Already initialized!"));
        assert_eq!(once.state(), OnceState::Initialized);
        assert_eq!(once.try_get().map(String::as_str), Some("Already initialized!"));
        assert_eq!(once.wait(), "Already initialized!");
    }
    #[test]
    fn once_with_panic_in_init() {
        let opinion = Arc::new(Once::<String>::new());
        let byte_str = b"Panicking is particul\xFFrly dangerous when dealing with unsafe!";

        let opinion_clone = Arc::clone(&opinion);

        // set panic hook to avoid messing up stdout
        std::panic::set_hook(Box::new(|_| {}));

        let join_handle = thread::Builder::new()
            .name(String::from("this thread should panic"))
            .spawn(move || {
                opinion_clone.call_once(|| String::from_utf8(byte_str.to_vec()).unwrap());
            }).unwrap();

        assert!(join_handle.join().is_err());
        assert_eq!(opinion.try_get(), None);
        assert_eq!(opinion.state(), OnceState::Initializing);
    }

    #[test]
    fn multithread_once() {
        let once = Arc::new(Once::new());
        assert_eq!(once.try_get(), None);
        assert_eq!(once.state(), OnceState::Uninitialized);

        let main_thread = thread::current();

        let values = ["initialized by first thread", "initialized by second thread", "initialized by third thread"];

        let threads = values.iter().copied().map(|value| {
            let once = Arc::clone(&once);
            let main_thread = main_thread.clone();

            thread::spawn(move || {
                once.call_once(|| value);
                main_thread.unpark();
            })
        }).collect::<Vec<_>>();

        thread::park();
        assert!(once.initialize("initialized by main thread").is_err());
        assert!(once.try_get().is_some());
        assert!(values.contains(&once.wait()));

        for thread in threads {
            thread.join().unwrap();
        }
    }

    // TODO: loom, although it doesn't seem to support const fn initialization
}