1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
//! Accurate sleeping. Only use native sleep as far as it can be trusted, then spin.
//!
//! The problem with `thread::sleep` is it isn't always very accurate, and this accuracy varies
//! on platform and state. Spinning is as accurate as we can get, but consumes the CPU
//! rather ungracefully.
//!
//! This library adds a middle ground, using a configurable native accuracy setting allowing
//! `thread::sleep` to wait the bulk of a sleep time, and spin the final section to guarantee
//! accuracy.
//!
//! # Examples
//! ```no_run
//! extern crate spin_sleep;
//! # use std::time::Duration;
//!
//! // Create a new sleeper that trusts native thread::sleep with 100μs accuracy
//! let spin_sleeper = spin_sleep::SpinSleeper::new(100_000);
//!
//! // Sleep for 1.01255 seconds, this will:
//! //  - thread:sleep for 1.01245 seconds, ie 100μs less than the requested duration
//! //  - spin until total 1.01255 seconds have elapsed
//! spin_sleeper.sleep(Duration::new(1, 12_550_000));
//! ```
//!
//! Sleep can also requested in `f64` seconds or `u64` nanoseconds
//! (useful when used with `time` crate)
//!
//! ```no_run
//! # use std::time::Duration;
//! # let spin_sleeper = spin_sleep::SpinSleeper::new(100_000);
//! spin_sleeper.sleep_s(1.01255);
//! spin_sleeper.sleep_ns(1_012_550_000);
//! ```
#[cfg(test)]
#[macro_use] extern crate approx;

mod loop_helper;

use std::thread;
use std::time::{Duration, Instant};
pub use loop_helper::*;

/// Marker alias to show the meaning of a `f64` in certain methods.
pub type Seconds = f64;
/// Marker alias to show the meaning of a `f64` in certain methods.
pub type RatePerSecond = f64;
/// Marker alias to show the meaning of a `u64` in certain methods.
pub type Nanoseconds = u64;
/// Marker alias to show the meaning of a `u32` in certain methods.
pub type SubsecondNanoseconds = u32;

/// Accuracy container for spin sleeping. See [crate docs](index.html).
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct SpinSleeper {
    native_accuracy_ns: u32,
}

impl SpinSleeper {
    /// Constructs new SpinSleeper with the input native sleep accuracy.
    /// The lower the `native_accuracy_ns` the more we effectively trust the accuracy of the
    /// `thread::sleep` function.
    pub fn new(native_accuracy_ns: SubsecondNanoseconds) -> SpinSleeper {
        SpinSleeper { native_accuracy_ns }
    }

    /// Returns configured native_accuracy_ns
    pub fn native_accuracy_ns(&self) -> SubsecondNanoseconds {
        self.native_accuracy_ns
    }

    /// Puts the current thread to sleep and then/or spins until the specified duration
    /// has elapsed.
    pub fn sleep(&self, duration: Duration) {
        let start = Instant::now();
        let accuracy = Duration::new(0, self.native_accuracy_ns);
        if duration > accuracy {
            thread::sleep(duration - accuracy)
        }
        // spin the rest of the duration
        while start.elapsed() < duration {}
    }

    /// Puts the current thread to sleep and then/or spins until the specified
    /// float second duration has elapsed.
    pub fn sleep_s(&self, seconds: Seconds) {
        if seconds > 0.0 {
            self.sleep(Duration::new(
                seconds.floor() as u64,
                ((seconds % 1f64) * 1_000_000_000f64).round() as u32,
            ))
        }
    }

    /// Puts the current thread to sleep and then/or spins until the specified
    /// nanosecond duration has elapsed.
    pub fn sleep_ns(&self, nanoseconds: Nanoseconds) {
        let subsec_ns = (nanoseconds % 1_000_000_000) as u32;
        let seconds = nanoseconds / 1_000_000_000;
        self.sleep(Duration::new(seconds, subsec_ns))
    }
}

// Not run unless specifically enabled with `cargo test --features "nondeterministic_tests"`
// Travis does not do well with these tests, as they require a certain CPU priority.
#[cfg(feature = "nondeterministic_tests")]
#[cfg(test)]
mod spin_sleep_test {
    use super::*;

    // The worst case error is unbounded even when spinning, but this accuracy is reasonable
    // for most platforms.
    const ACCEPTABLE_DELTA_NS: SubsecondNanoseconds = 50_000;

    // Since on spin performance is not guaranteed it suffices that the assertions are valid
    // 'most of the time'. This macro should avoid most 1-off failures.
    macro_rules! passes_eventually {
        ($test: stmt) => {{
            let mut error = None;
            for _ in 0..50 {
                match ::std::panic::catch_unwind(|| {
                    $test;
                }) {
                    Ok(_) => break,
                    Err(err) => {
                        // test is failing, maybe due to spin unreliability
                        error = error.or(Some(err));
                        thread::sleep(Duration::new(0, 1000));
                    }
                }
            }
            assert!(error.is_none(), "Test failed 50/50 times: {:?}", error.unwrap());
        }};
    }

    #[test]
    fn sleep_small() {
        passes_eventually!({
            let ns_duration = 12_345_678;

            let ps = SpinSleeper::new(20_000_000);
            ps.sleep(Duration::new(0, 1000)); // warm up

            let before = Instant::now();
            ps.sleep(Duration::new(0, ns_duration));
            let after = Instant::now();

            println!("Actual: {:?}", after.duration_since(before));
            assert!(after.duration_since(before) <=
                Duration::new(0, ns_duration + ACCEPTABLE_DELTA_NS));
            assert!(after.duration_since(before) >=
                Duration::new(0, ns_duration - ACCEPTABLE_DELTA_NS));
        });
    }

    #[test]
    fn sleep_big() {
        passes_eventually!({
            let ns_duration = 212_345_678;

            let ps = SpinSleeper::new(20_000_000);
            ps.sleep(Duration::new(0, 1000)); // warm up

            let before = Instant::now();
            ps.sleep(Duration::new(1, ns_duration));
            let after = Instant::now();

            println!("Actual: {:?}", after.duration_since(before));
            assert!(after.duration_since(before) <=
                Duration::new(1, ns_duration + ACCEPTABLE_DELTA_NS));
            assert!(after.duration_since(before) >=
                Duration::new(1, ns_duration - ACCEPTABLE_DELTA_NS));
        });
    }

    #[test]
    fn sleep_s() {
        passes_eventually!({
            let ns_duration = 12_345_678_f64;

            let ps = SpinSleeper::new(20_000_000);
            ps.sleep_s(0.000001); // warm up

            let before = Instant::now();
            ps.sleep_s(ns_duration / 1_000_000_000_f64);
            let after = Instant::now();

            println!("Actual: {:?}", after.duration_since(before));
            assert!(after.duration_since(before) <=
                Duration::new(0, ns_duration.round() as u32 + ACCEPTABLE_DELTA_NS));
            assert!(after.duration_since(before) >=
                Duration::new(0, ns_duration.round() as u32 - ACCEPTABLE_DELTA_NS));
        });
    }

    #[test]
    fn sleep_ns() {
        passes_eventually!({
            let ns_duration: u32 = 12_345_678;

            let ps = SpinSleeper::new(20_000_000);
            ps.sleep_ns(1000); // warm up

            let before = Instant::now();
            ps.sleep_ns(ns_duration as u64);
            let after = Instant::now();

            println!("Actual: {:?}", after.duration_since(before));
            assert!(after.duration_since(before) <=
                Duration::new(0, ns_duration + ACCEPTABLE_DELTA_NS));
            assert!(after.duration_since(before) >=
                Duration::new(0, ns_duration - ACCEPTABLE_DELTA_NS));
        });
    }
}