1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
//! Locks that have the same behaviour as a mutex.
//!
//! The [`Mutex`] in the root of the crate, can be configured using the `ticket_mutex` feature.
//! If it's enabled, [`TicketMutex`] and [`TicketMutexGuard`] will be re-exported as [`Mutex`]
//! and [`MutexGuard`], otherwise the [`SpinMutex`] and guard will be re-exported.
//!
//! `ticket_mutex` is disabled by default.
//!
//! [`Mutex`]: ../struct.Mutex.html
//! [`MutexGuard`]: ../struct.MutexGuard.html
//! [`TicketMutex`]: ./struct.TicketMutex.html
//! [`TicketMutexGuard`]: ./struct.TicketMutexGuard.html
//! [`SpinMutex`]: ./struct.SpinMutex.html
//! [`SpinMutexGuard`]: ./struct.SpinMutexGuard.html

mod spin;
pub use self::spin::*;

mod ticket;
pub use self::ticket::*;

use core::{
    fmt,
    ops::{Deref, DerefMut},
};
use crate::{RelaxStrategy, Spin};

#[cfg(feature = "ticket_mutex")]
type InnerMutex<T, R> = TicketMutex<T, R>;
#[cfg(feature = "ticket_mutex")]
type InnerMutexGuard<'a, T> = TicketMutexGuard<'a, T>;

#[cfg(not(feature = "ticket_mutex"))]
type InnerMutex<T, R> = SpinMutex<T, R>;
#[cfg(not(feature = "ticket_mutex"))]
type InnerMutexGuard<'a, T> = SpinMutexGuard<'a, T>;

/// A spin-based lock providing mutually exclusive access to data.
///
/// The implementation uses either a [`TicketMutex`] or a regular [`SpinMutex`] depending on whether the `ticket_mutex`
/// feature flag is enabled.
///
/// # Example
///
/// ```
/// use spin;
///
/// let lock = spin::Mutex::new(0);
///
/// // Modify the data
/// *lock.lock() = 2;
///
/// // Read the data
/// let answer = *lock.lock();
/// assert_eq!(answer, 2);
/// ```
///
/// # Thread safety example
///
/// ```
/// use spin;
/// use std::sync::{Arc, Barrier};
///
/// let thread_count = 1000;
/// let spin_mutex = Arc::new(spin::Mutex::new(0));
///
/// // We use a barrier to ensure the readout happens after all writing
/// let barrier = Arc::new(Barrier::new(thread_count + 1));
///
/// for _ in (0..thread_count) {
///     let my_barrier = barrier.clone();
///     let my_lock = spin_mutex.clone();
///     std::thread::spawn(move || {
///         let mut guard = my_lock.lock();
///         *guard += 1;
///
///         // Release the lock to prevent a deadlock
///         drop(guard);
///         my_barrier.wait();
///     });
/// }
///
/// barrier.wait();
///
/// let answer = { *spin_mutex.lock() };
/// assert_eq!(answer, thread_count);
/// ```
pub struct Mutex<T: ?Sized, R = Spin> {
    inner: InnerMutex<T, R>,
}

unsafe impl<T: ?Sized + Send, R> Sync for Mutex<T, R> {}
unsafe impl<T: ?Sized + Send, R> Send for Mutex<T, R> {}

/// A generic guard that will protect some data access and
/// uses either a ticket lock or a normal spin mutex.
///
/// For more info see [`TicketMutexGuard`] or [`SpinMutexGuard`].
///
/// [`TicketMutexGuard`]: ./struct.TicketMutexGuard.html
/// [`SpinMutexGuard`]: ./struct.SpinMutexGuard.html
pub struct MutexGuard<'a, T: 'a + ?Sized> {
    inner: InnerMutexGuard<'a, T>,
}

impl<T, R> Mutex<T, R> {
    /// Creates a new [`Mutex`] wrapping the supplied data.
    ///
    /// # Example
    ///
    /// ```
    /// use spin::Mutex;
    ///
    /// static MUTEX: Mutex<()> = Mutex::new(());
    ///
    /// fn demo() {
    ///     let lock = MUTEX.lock();
    ///     // do something with lock
    ///     drop(lock);
    /// }
    /// ```
    #[inline(always)]
    pub const fn new(value: T) -> Self {
        Self { inner: InnerMutex::new(value) }
    }

    /// Consumes this [`Mutex`] and unwraps the underlying data.
    ///
    /// # Example
    ///
    /// ```
    /// let lock = spin::Mutex::new(42);
    /// assert_eq!(42, lock.into_inner());
    /// ```
    #[inline(always)]
    pub fn into_inner(self) -> T {
        self.inner.into_inner()
    }
}

impl<T: ?Sized, R: RelaxStrategy> Mutex<T, R> {
    /// Locks the [`Mutex`] and returns a guard that permits access to the inner data.
    ///
    /// The returned value may be dereferenced for data access
    /// and the lock will be dropped when the guard falls out of scope.
    ///
    /// ```
    /// let lock = spin::Mutex::new(0);
    /// {
    ///     let mut data = lock.lock();
    ///     // The lock is now locked and the data can be accessed
    ///     *data += 1;
    ///     // The lock is implicitly dropped at the end of the scope
    /// }
    /// ```
    #[inline(always)]
    pub fn lock(&self) -> MutexGuard<T> {
        MutexGuard {
            inner: self.inner.lock(),
        }
    }
}

impl<T: ?Sized, R> Mutex<T, R> {
    /// Returns `true` if the lock is currently held.
    ///
    /// # Safety
    ///
    /// This function provides no synchronization guarantees and so its result should be considered 'out of date'
    /// the instant it is called. Do not use it for synchronization purposes. However, it may be useful as a heuristic.
    #[inline(always)]
    pub fn is_locked(&self) -> bool {
        self.inner.is_locked()
    }

    /// Force unlock this [`Mutex`].
    ///
    /// # Safety
    ///
    /// This is *extremely* unsafe if the lock is not held by the current
    /// thread. However, this can be useful in some instances for exposing the
    /// lock to FFI that doesn't know how to deal with RAII.
    #[inline(always)]
    pub unsafe fn force_unlock(&self) {
        self.inner.force_unlock()
    }

    /// Try to lock this [`Mutex`], returning a lock guard if successful.
    ///
    /// # Example
    ///
    /// ```
    /// let lock = spin::Mutex::new(42);
    ///
    /// let maybe_guard = lock.try_lock();
    /// assert!(maybe_guard.is_some());
    ///
    /// // `maybe_guard` is still held, so the second call fails
    /// let maybe_guard2 = lock.try_lock();
    /// assert!(maybe_guard2.is_none());
    /// ```
    #[inline(always)]
    pub fn try_lock(&self) -> Option<MutexGuard<T>> {
        self.inner
            .try_lock()
            .map(|guard| MutexGuard { inner: guard })
    }

    /// Returns a mutable reference to the underlying data.
    ///
    /// Since this call borrows the [`Mutex`] mutably, and a mutable reference is guaranteed to be exclusive in Rust,
    /// no actual locking needs to take place -- the mutable borrow statically guarantees no locks exist. As such,
    /// this is a 'zero-cost' operation.
    ///
    /// # Example
    ///
    /// ```
    /// let mut lock = spin::Mutex::new(0);
    /// *lock.get_mut() = 10;
    /// assert_eq!(*lock.lock(), 10);
    /// ```
    #[inline(always)]
    pub fn get_mut(&mut self) -> &mut T {
        self.inner.get_mut()
    }
}

impl<T: ?Sized + fmt::Debug, R> fmt::Debug for Mutex<T, R> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Debug::fmt(&self.inner, f)
    }
}

impl<T: ?Sized + Default, R> Default for Mutex<T, R> {
    fn default() -> Self {
        Self::new(Default::default())
    }
}

impl<T, R> From<T> for Mutex<T, R> {
    fn from(data: T) -> Self {
        Self::new(data)
    }
}

impl<'a, T: ?Sized> MutexGuard<'a, T> {
    /// Leak the lock guard, yielding a mutable reference to the underlying data.
    ///
    /// Note that this function will permanently lock the original [`Mutex`].
    ///
    /// ```
    /// let mylock = spin::Mutex::new(0);
    ///
    /// let data: &mut i32 = spin::MutexGuard::leak(mylock.lock());
    ///
    /// *data = 1;
    /// assert_eq!(*data, 1);
    /// ```
    #[inline(always)]
    pub fn leak(this: Self) -> &'a mut T {
        InnerMutexGuard::leak(this.inner)
    }
}

impl<'a, T: ?Sized + fmt::Debug> fmt::Debug for MutexGuard<'a, T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Debug::fmt(&**self, f)
    }
}

impl<'a, T: ?Sized + fmt::Display> fmt::Display for MutexGuard<'a, T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Display::fmt(&**self, f)
    }
}

impl<'a, T: ?Sized> Deref for MutexGuard<'a, T> {
    type Target = T;
    fn deref(&self) -> &T {
        &*self.inner
    }
}

impl<'a, T: ?Sized> DerefMut for MutexGuard<'a, T> {
    fn deref_mut(&mut self) -> &mut T {
        &mut *self.inner
    }
}

#[cfg(feature = "lock_api")]
unsafe impl<R: RelaxStrategy> lock_api_crate::RawMutex for Mutex<(), R> {
    type GuardMarker = lock_api_crate::GuardSend;

    const INIT: Self = Self::new(());

    fn lock(&self) {
        // Prevent guard destructor running
        core::mem::forget(Self::lock(self));
    }

    fn try_lock(&self) -> bool {
        // Prevent guard destructor running
        Self::try_lock(self).map(core::mem::forget).is_some()
    }

    unsafe fn unlock(&self) {
        self.force_unlock();
    }

    fn is_locked(&self) -> bool {
        self.inner.is_locked()
    }
}