1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
//! Joining of components for iteration over entities with specific components.

use std;

use hibitset::{BitIter, BitSetAll, BitSetAnd, BitSetLike};
use shred::{Fetch, FetchMut, Read, ReadExpect, Resource, Write, WriteExpect};
use std::ops::{Deref, DerefMut};
use tuple_utils::Split;

use crate::world::{Entities, Entity, Index};

#[cfg(feature = "parallel")]
mod par_join;

#[cfg(feature = "parallel")]
pub use self::par_join::{JoinParIter, ParJoin};

/// `BitAnd` is a helper method to & bitsets together resulting in a tree.
pub trait BitAnd {
    /// The combined bitsets.
    type Value: BitSetLike;
    /// Combines `Self` into a single `BitSetLike` through `BitSetAnd`.
    fn and(self) -> Self::Value;
}

/// This needs to be special cased
impl<A> BitAnd for (A,)
where
    A: BitSetLike,
{
    type Value = A;

    fn and(self) -> Self::Value {
        self.0
    }
}

macro_rules! bitset_and {
    // use variables to indicate the arity of the tuple
    ($($from:ident),*) => {
        impl<$($from),*> BitAnd for ($($from),*)
            where $($from: BitSetLike),*
        {
            type Value = BitSetAnd<
                <<Self as Split>::Left as BitAnd>::Value,
                <<Self as Split>::Right as BitAnd>::Value
            >;

            fn and(self) -> Self::Value {
                let (l, r) = self.split();
                BitSetAnd(l.and(), r.and())
            }
        }
    }
}

bitset_and! {A, B}
bitset_and! {A, B, C}
bitset_and! {A, B, C, D}
bitset_and! {A, B, C, D, E}
bitset_and! {A, B, C, D, E, F}
bitset_and! {A, B, C, D, E, F, G}
bitset_and! {A, B, C, D, E, F, G, H}
bitset_and! {A, B, C, D, E, F, G, H, I}
bitset_and! {A, B, C, D, E, F, G, H, I, J}
bitset_and! {A, B, C, D, E, F, G, H, I, J, K}
bitset_and! {A, B, C, D, E, F, G, H, I, J, K, L}
bitset_and! {A, B, C, D, E, F, G, H, I, J, K, L, M}
bitset_and! {A, B, C, D, E, F, G, H, I, J, K, L, M, N}
bitset_and! {A, B, C, D, E, F, G, H, I, J, K, L, M, N, O}
bitset_and! {A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P}

/// The purpose of the `Join` trait is to provide a way
/// to access multiple storages at the same time with
/// the merged bit set.
///
/// Joining component storages means that you'll only get values where
/// for a given entity every storage has an associated component.
///
/// ## Example
///
/// ```
/// # use specs::prelude::*;
/// # use specs::world::EntitiesRes;
/// # #[derive(Debug, PartialEq)]
/// # struct Pos; impl Component for Pos { type Storage = VecStorage<Self>; }
/// # #[derive(Debug, PartialEq)]
/// # struct Vel; impl Component for Vel { type Storage = VecStorage<Self>; }
/// let mut world = World::new();
///
/// world.register::<Pos>();
/// world.register::<Vel>();
///
/// {
///     let pos = world.read_storage::<Pos>();
///     let vel = world.read_storage::<Vel>();
///
///     // There are no entities yet, so no pair will be returned.
///     let joined: Vec<_> = (&pos, &vel).join().collect();
///     assert_eq!(joined, vec![]);
/// }
///
/// world.create_entity().with(Pos).build();
///
/// {
///     let pos = world.read_storage::<Pos>();
///     let vel = world.read_storage::<Vel>();
///
///     // Although there is an entity, it only has `Pos`.
///     let joined: Vec<_> = (&pos, &vel).join().collect();
///     assert_eq!(joined, vec![]);
/// }
///
/// let ent = world.create_entity().with(Pos).with(Vel).build();
///
/// {
///     let pos = world.read_storage::<Pos>();
///     let vel = world.read_storage::<Vel>();
///
///     // Now there is one entity that has both a `Vel` and a `Pos`.
///     let joined: Vec<_> = (&pos, &vel).join().collect();
///     assert_eq!(joined, vec![(&Pos, &Vel)]);
///
///     // If we want to get the entity the components are associated to,
///     // we need to join over `Entities`:
///
///     let entities = world.read_resource::<EntitiesRes>();
///     // note: `EntitiesRes` is the fetched resource; we get back
///     // `Read<EntitiesRes>`.
///     // `Read<EntitiesRes>` can also be referred to by `Entities` which
///     // is a shorthand type definition to the former type.
///
///     let joined: Vec<_> = (&entities, &pos, &vel).join().collect();
///     assert_eq!(joined, vec![(ent, &Pos, &Vel)]);
/// }
/// ```
///
/// ## Iterating over a single storage
///
/// `Join` can also be used to iterate over a single
/// storage, just by writing `(&storage).join()`.
pub trait Join {
    /// Type of joined components.
    type Type;
    /// Type of joined storages.
    type Value;
    /// Type of joined bit mask.
    type Mask: BitSetLike;

    /// Create a joined iterator over the contents.
    fn join(self) -> JoinIter<Self>
    where
        Self: Sized,
    {
        JoinIter::new(self)
    }

    /// Returns a `Join`-able structure that yields all indices, returning
    /// `None` for all missing elements and `Some(T)` for found elements.
    ///
    /// WARNING: Do not have a join of only `MaybeJoin`s. Otherwise the join
    /// will iterate over every single index of the bitset. If you want a
    /// join with all `MaybeJoin`s, add an `EntitiesRes` to the join as well
    /// to bound the join to all entities that are alive.
    ///
    /// ```
    /// # use specs::prelude::*;
    /// # #[derive(Debug, PartialEq)]
    /// # struct Pos { x: i32, y: i32 } impl Component for Pos { type Storage = VecStorage<Self>; }
    /// # #[derive(Debug, PartialEq)]
    /// # struct Vel { x: i32, y: i32 } impl Component for Vel { type Storage = VecStorage<Self>; }
    /// struct ExampleSystem;
    /// impl<'a> System<'a> for ExampleSystem {
    ///     type SystemData = (
    ///         WriteStorage<'a, Pos>,
    ///         ReadStorage<'a, Vel>,
    ///     );
    ///     fn run(&mut self, (mut positions, velocities): Self::SystemData) {
    ///         for (mut position, maybe_velocity) in (&mut positions, velocities.maybe()).join() {
    ///             if let Some(velocity) = maybe_velocity {
    ///                 position.x += velocity.x;
    ///                 position.y += velocity.y;
    ///             }
    ///         }
    ///     }
    /// }
    ///
    /// fn main() {
    ///     let mut world = World::new();
    ///     let mut dispatcher = DispatcherBuilder::new()
    ///         .with(ExampleSystem, "example_system", &[])
    ///         .build();
    ///
    ///     dispatcher.setup(&mut world);
    ///
    ///     let e1 = world.create_entity()
    ///         .with(Pos { x: 0, y: 0 })
    ///         .with(Vel { x: 5, y: 2 })
    ///         .build();
    ///
    ///     let e2 = world.create_entity()
    ///         .with(Pos { x: 0, y: 0 })
    ///         .build();
    ///
    ///     dispatcher.dispatch(&mut world);
    ///
    ///     let positions = world.read_storage::<Pos>();
    ///     assert_eq!(positions.get(e1), Some(&Pos { x: 5, y: 2 }));
    ///     assert_eq!(positions.get(e2), Some(&Pos { x: 0, y: 0 }));
    /// }
    /// ```
    fn maybe(self) -> MaybeJoin<Self>
    where
        Self: Sized,
    {
        MaybeJoin(self)
    }

    /// Open this join by returning the mask and the storages.
    ///
    /// # Safety
    ///
    /// This is unsafe because implementations of this trait can permit
    /// the `Value` to be mutated independently of the `Mask`.
    /// If the `Mask` does not correctly report the status of the `Value`
    /// then illegal memory access can occur.
    unsafe fn open(self) -> (Self::Mask, Self::Value);

    /// Get a joined component value by a given index.
    ///
    /// # Safety
    ///
    /// * A call to `get` must be preceded by a check if `id` is part of
    ///   `Self::Mask`
    /// * The implementation of this method may use unsafe code, but has no
    ///   invariants to meet
    unsafe fn get(value: &mut Self::Value, id: Index) -> Self::Type;

    /// If this `Join` typically returns all indices in the mask, then iterating
    /// over only it or combined with other joins that are also dangerous
    /// will cause the `JoinIter`/`ParJoin` to go through all indices which
    /// is usually not what is wanted and will kill performance.
    #[inline]
    fn is_unconstrained() -> bool {
        false
    }
}

/// A `Join`-able structure that yields all indices, returning `None` for all
/// missing elements and `Some(T)` for found elements.
///
/// For usage see [`Join::maybe()`].
///
/// WARNING: Do not have a join of only `MaybeJoin`s. Otherwise the join will
/// iterate over every single index of the bitset. If you want a join with
/// all `MaybeJoin`s, add an `EntitiesRes` to the join as well to bound the
/// join to all entities that are alive.
///
/// [`Join::maybe()`]: ../join/trait.Join.html#method.maybe
pub struct MaybeJoin<J: Join>(pub J);

impl<T> Join for MaybeJoin<T>
where
    T: Join,
{
    type Mask = BitSetAll;
    type Type = Option<<T as Join>::Type>;
    type Value = (<T as Join>::Mask, <T as Join>::Value);

    // SAFETY: This wraps another implementation of `open`, making it dependent on
    // `J`'s correctness. We can safely assume `J` is valid, thus this must be
    // valid, too. No invariants to meet.
    unsafe fn open(self) -> (Self::Mask, Self::Value) {
        let (mask, value) = self.0.open();
        (BitSetAll, (mask, value))
    }

    // SAFETY: No invariants to meet and the unsafe code checks the mask, thus
    // fulfills the requirements for calling `get`
    unsafe fn get((mask, value): &mut Self::Value, id: Index) -> Self::Type {
        if mask.contains(id) {
            Some(<T as Join>::get(value, id))
        } else {
            None
        }
    }

    #[inline]
    fn is_unconstrained() -> bool {
        true
    }
}

// SAFETY: This is safe as long as `T` implements `ParJoin` safely.  `MaybeJoin`
// relies on `T as Join` for all storage access and safely wraps the inner
// `Join` API, so it should also be able to implement `ParJoin`.
#[cfg(feature = "parallel")]
unsafe impl<T> ParJoin for MaybeJoin<T> where T: ParJoin {}

/// `JoinIter` is an `Iterator` over a group of `Storages`.
#[must_use]
pub struct JoinIter<J: Join> {
    keys: BitIter<J::Mask>,
    values: J::Value,
}

impl<J: Join> JoinIter<J> {
    /// Create a new join iterator.
    pub fn new(j: J) -> Self {
        if <J as Join>::is_unconstrained() {
            log::warn!(
                "`Join` possibly iterating through all indices, you might've made a join with all `MaybeJoin`s, which is unbounded in length."
            );
        }

        // SAFETY: We do not swap out the mask or the values, nor do we allow it by
        // exposing them.
        let (keys, values) = unsafe { j.open() };
        JoinIter {
            keys: keys.iter(),
            values,
        }
    }
}

impl<J: Join> JoinIter<J> {
    /// Allows getting joined values for specific entity.
    ///
    /// ## Example
    ///
    /// ```
    /// # use specs::prelude::*;
    /// # #[derive(Debug, PartialEq)]
    /// # struct Pos; impl Component for Pos { type Storage = VecStorage<Self>; }
    /// # #[derive(Debug, PartialEq)]
    /// # struct Vel; impl Component for Vel { type Storage = VecStorage<Self>; }
    /// let mut world = World::new();
    ///
    /// world.register::<Pos>();
    /// world.register::<Vel>();
    ///
    /// // This entity could be stashed anywhere (into `Component`, `Resource`, `System`s data, etc.) as it's just a number.
    /// let entity = world
    ///     .create_entity()
    ///     .with(Pos)
    ///     .with(Vel)
    ///     .build();
    ///
    /// // Later
    /// {
    ///     let mut pos = world.write_storage::<Pos>();
    ///     let vel = world.read_storage::<Vel>();
    ///
    ///     assert_eq!(
    ///         Some((&mut Pos, &Vel)),
    ///         (&mut pos, &vel).join().get(entity, &world.entities()),
    ///         "The entity that was stashed still has the needed components and is alive."
    ///     );
    /// }
    ///
    /// // The entity has found nice spot and doesn't need to move anymore.
    /// world.write_storage::<Vel>().remove(entity);
    ///
    /// // Even later
    /// {
    ///     let mut pos = world.write_storage::<Pos>();
    ///     let vel = world.read_storage::<Vel>();
    ///
    ///     assert_eq!(
    ///         None,
    ///         (&mut pos, &vel).join().get(entity, &world.entities()),
    ///         "The entity doesn't have velocity anymore."
    ///     );
    /// }
    /// ```
    pub fn get(&mut self, entity: Entity, entities: &Entities) -> Option<J::Type> {
        if self.keys.contains(entity.id()) && entities.is_alive(entity) {
            // SAFETY: the mask (`keys`) is checked as specified in the docs of `get`.
            Some(unsafe { J::get(&mut self.values, entity.id()) })
        } else {
            None
        }
    }

    /// Allows getting joined values for specific raw index.
    ///
    /// The raw index for an `Entity` can be retrieved using `Entity::id`
    /// method.
    ///
    /// As this method operates on raw indices, there is no check to see if the
    /// entity is still alive, so the caller should ensure it instead.
    pub fn get_unchecked(&mut self, index: Index) -> Option<J::Type> {
        if self.keys.contains(index) {
            // SAFETY: the mask (`keys`) is checked as specified in the docs of `get`.
            Some(unsafe { J::get(&mut self.values, index) })
        } else {
            None
        }
    }
}

impl<J: Join> std::iter::Iterator for JoinIter<J> {
    type Item = J::Type;

    fn next(&mut self) -> Option<J::Type> {
        // SAFETY: since `idx` is yielded from `keys` (the mask), it is necessarily a
        // part of it. Thus, requirements are fulfilled for calling `get`.
        self.keys
            .next()
            .map(|idx| unsafe { J::get(&mut self.values, idx) })
    }
}

/// Clones the `JoinIter`.
/// 
/// # Examples
/// 
/// ```
/// # use specs::prelude::*;
/// # #[derive(Debug)]
/// # struct Position; impl Component for Position { type Storage = VecStorage<Self>; }
/// # #[derive(Debug)]
/// # struct Collider; impl Component for Collider { type Storage = VecStorage<Self>; }
/// let mut world = World::new();
///
/// world.register::<Position>();
/// world.register::<Collider>();
///
/// // add some entities to our world
/// for _ in 0..10 {
///     let entity = world
///         .create_entity()
///         .with(Position)
///         .with(Collider)
///         .build();   
/// }
///
/// // check for collisions between entities
/// let positions = world.read_storage::<Position>();
/// let colliders = world.read_storage::<Collider>();
/// 
/// let mut join_iter = (&positions, &colliders).join();
/// while let Some(a) = join_iter.next() {
///     for b in join_iter.clone() {
///         # let check_collision = |a, b| true;
///         if check_collision(a, b) {
///             // do stuff
///         }
///     }
/// }
/// ```
/// 
/// It is *not* possible to clone a `JoinIter` which allows for
/// mutation of its content, as this would lead to shared mutable
/// access.
/// 
/// ```compile_fail
/// # use specs::prelude::*;
/// # #[derive(Debug)]
/// # struct Position; impl Component for Position { type Storage = VecStorage<Self>; }
/// # let mut world = World::new();
/// # world.register::<Position>();
/// # let entity = world.create_entity().with(Position).build();  
/// // .. previous example
/// 
/// let mut positions = world.write_storage::<Position>();
/// 
/// let mut join_iter = (&mut positions).join();
/// // this must not compile, as the following line would cause
/// // undefined behavior!
/// let mut cloned_iter = join_iter.clone();
/// let (mut alias_one, mut alias_two) = (join_iter.next(), cloned_iter.next());
/// ```
impl<J: Join> Clone for JoinIter<J>
where
    J::Mask: Clone,
    J::Value: Clone,
{
    fn clone(&self) -> Self {
        Self {
            keys: self.keys.clone(),
            values: self.values.clone(),
        }
    }
}

macro_rules! define_open {
    // use variables to indicate the arity of the tuple
    ($($from:ident),*) => {
        impl<$($from,)*> Join for ($($from),*,)
            where $($from: Join),*,
                  ($(<$from as Join>::Mask,)*): BitAnd,
        {
            type Type = ($($from::Type),*,);
            type Value = ($($from::Value),*,);
            type Mask = <($($from::Mask,)*) as BitAnd>::Value;
            #[allow(non_snake_case)]

            // SAFETY: While we do expose the mask and the values and therefore would allow swapping them,
            // this method is `unsafe` and relies on the same invariants.
            unsafe fn open(self) -> (Self::Mask, Self::Value) {
                let ($($from,)*) = self;
                let ($($from,)*) = ($($from.open(),)*);
                (
                    ($($from.0),*,).and(),
                    ($($from.1),*,)
                )
            }

            // SAFETY: No invariants to meet and `get` is safe to call as the caller must have checked the mask,
            // which only has a key that exists in all of the storages.
            #[allow(non_snake_case)]
            unsafe fn get(v: &mut Self::Value, i: Index) -> Self::Type {
                let &mut ($(ref mut $from,)*) = v;
                ($($from::get($from, i),)*)
            }

            #[inline]
            fn is_unconstrained() -> bool {
                let mut unconstrained = true;
                $( unconstrained = unconstrained && $from::is_unconstrained(); )*
                unconstrained
            }
        }

        // SAFETY: This is safe to implement since all components implement `ParJoin`.
        // If the access of every individual `get` leads to disjoint memory access, calling
        // all of them after another does in no case lead to access of common memory.
        #[cfg(feature = "parallel")]
        unsafe impl<$($from,)*> ParJoin for ($($from),*,)
            where $($from: ParJoin),*,
                  ($(<$from as Join>::Mask,)*): BitAnd,
        {}

    }
}

define_open! {A}
define_open! {A, B}
define_open! {A, B, C}
define_open! {A, B, C, D}
define_open! {A, B, C, D, E}
define_open! {A, B, C, D, E, F}
define_open! {A, B, C, D, E, F, G}
define_open! {A, B, C, D, E, F, G, H}
define_open! {A, B, C, D, E, F, G, H, I}
define_open! {A, B, C, D, E, F, G, H, I, J}
define_open! {A, B, C, D, E, F, G, H, I, J, K}
define_open! {A, B, C, D, E, F, G, H, I, J, K, L}
define_open! {A, B, C, D, E, F, G, H, I, J, K, L, M}
define_open! {A, B, C, D, E, F, G, H, I, J, K, L, M, N}
define_open! {A, B, C, D, E, F, G, H, I, J, K, L, M, N, O}
define_open! {A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P}
define_open!(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q);
define_open!(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R);

/// `Fetch`/`Read`/`Write`/etc. all implement `Deref`/`DerefMut` but Rust does
/// not implicitly dereference the wrapper type when we are joining which
/// creates annoying scenarios like `&*entities` where we have to reborrow the
/// type unnecessarily.
///
/// So instead, we implement `Join` on the wrapper types and forward the
/// implementations to the underlying types so that Rust doesn't have to do
/// implicit magic to figure out what we want to do with the type.
macro_rules! immutable_resource_join {
    ($($ty:ty),*) => {
        $(
        impl<'a, 'b, T> Join for &'a $ty
        where
            &'a T: Join,
            T: Resource,
        {
            type Type = <&'a T as Join>::Type;
            type Value = <&'a T as Join>::Value;
            type Mask = <&'a T as Join>::Mask;

            // SAFETY: This only wraps `T` and, while exposing the mask and the values,
            // requires the same invariants as the original implementation and is thus safe.
            unsafe fn open(self) -> (Self::Mask, Self::Value) {
                self.deref().open()
            }

            // SAFETY: The mask of `Self` and `T` are identical, thus a check to `Self`'s mask (which is required)
            // is equal to a check of `T`'s mask, which makes `get` safe to call.
            unsafe fn get(v: &mut Self::Value, i: Index) -> Self::Type {
                <&'a T as Join>::get(v, i)
            }

            #[inline]
            fn is_unconstrained() -> bool {
                <&'a T as Join>::is_unconstrained()
            }
        }

        // SAFETY: This is just a wrapper of `T`'s implementation for `ParJoin` and can
        // in no case lead to other memory access patterns.
        #[cfg(feature = "parallel")]
        unsafe impl<'a, 'b, T> ParJoin for &'a $ty
        where
            &'a T: ParJoin,
            T: Resource
        {}
        )*
    };
}

macro_rules! mutable_resource_join {
    ($($ty:ty),*) => {
        $(
        impl<'a, 'b, T> Join for &'a mut $ty
        where
            &'a mut T: Join,
            T: Resource,
        {
            type Type = <&'a mut T as Join>::Type;
            type Value = <&'a mut T as Join>::Value;
            type Mask = <&'a mut T as Join>::Mask;

            // SAFETY: This only wraps `T` and, while exposing the mask and the values,
            // requires the same invariants as the original implementation and is thus safe.
            unsafe fn open(self) -> (Self::Mask, Self::Value) {
                self.deref_mut().open()
            }

            // SAFETY: The mask of `Self` and `T` are identical, thus a check to `Self`'s mask (which is required)
            // is equal to a check of `T`'s mask, which makes `get_mut` safe to call.
            unsafe fn get(v: &mut Self::Value, i: Index) -> Self::Type {
                <&'a mut T as Join>::get(v, i)
            }

            #[inline]
            fn is_unconstrained() -> bool {
                <&'a mut T as Join>::is_unconstrained()
            }
        }

        // SAFETY: This is just a wrapper of `T`'s implementation for `ParJoin` and can
        // in no case lead to other memory access patterns.
        #[cfg(feature = "parallel")]
        unsafe impl<'a, 'b, T> ParJoin for &'a mut $ty
        where
            &'a mut T: ParJoin,
            T: Resource
        {}
        )*
    };
}

immutable_resource_join!(Fetch<'b, T>, Read<'b, T>, ReadExpect<'b, T>);
mutable_resource_join!(FetchMut<'b, T>, Write<'b, T>, WriteExpect<'b, T>);