1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
use crate::{
    collections::{BTreeMap, VecDeque},
    error::{Error, Result},
    merge::{hash_leaf, merge},
    traits::Hasher,
    vec::Vec,
    H256, TREE_HEIGHT,
};

type Range = core::ops::Range<usize>;

#[derive(Debug, Clone)]
pub struct MerkleProof {
    leaves_path: Vec<Vec<u8>>,
    proof: Vec<(H256, u8)>,
}

impl MerkleProof {
    /// Create MerkleProof
    /// leaves_path: contains height of non-zero siblings
    /// proof: contains merkle path for each leaves it's height
    pub fn new(leaves_path: Vec<Vec<u8>>, proof: Vec<(H256, u8)>) -> Self {
        MerkleProof { leaves_path, proof }
    }

    /// Destruct the structure, useful for serialization
    pub fn take(self) -> (Vec<Vec<u8>>, Vec<(H256, u8)>) {
        let MerkleProof { leaves_path, proof } = self;
        (leaves_path, proof)
    }

    /// number of leaves required by this merkle proof
    pub fn leaves_count(&self) -> usize {
        self.leaves_path.len()
    }

    /// return the inner leaves_path vector
    pub fn leaves_path(&self) -> &Vec<Vec<u8>> {
        &self.leaves_path
    }

    /// return proof merkle path
    pub fn proof(&self) -> &Vec<(H256, u8)> {
        &self.proof
    }

    /// convert merkle proof into CompiledMerkleProof
    pub fn compile(self, mut leaves: Vec<(H256, H256)>) -> Result<CompiledMerkleProof> {
        if leaves.is_empty() {
            return Err(Error::EmptyKeys);
        } else if leaves.len() != self.leaves_count() {
            return Err(Error::IncorrectNumberOfLeaves {
                expected: self.leaves_count(),
                actual: leaves.len(),
            });
        }

        let (leaves_path, proof) = self.take();
        let mut leaves_path: Vec<VecDeque<_>> = leaves_path.into_iter().map(Into::into).collect();
        let mut proof: VecDeque<_> = proof.into();

        // sort leaves
        leaves.sort_unstable_by_key(|(k, _v)| *k);
        // tree_buf: (height, key) -> (key_index, node)
        let mut tree_buf: BTreeMap<_, _> = leaves
            .into_iter()
            .enumerate()
            .map(|(i, (k, _v))| ((0, k), (i, leaf_program(i))))
            .collect();
        // rebuild the tree from bottom to top
        while !tree_buf.is_empty() {
            // pop_front from tree_buf, the API is unstable
            let &(mut height, key) = tree_buf.keys().next().unwrap();
            let (leaf_index, program) = tree_buf.remove(&(height, key)).unwrap();

            if proof.is_empty() && tree_buf.is_empty() {
                return Ok(CompiledMerkleProof(program.0));
            } else if height == TREE_HEIGHT {
                if !proof.is_empty() {
                    return Err(Error::CorruptedProof);
                }
                return Ok(CompiledMerkleProof(program.0));
            }

            let mut sibling_key = key.parent_path(height as u8);
            if !key.get_bit(height as u8) {
                sibling_key.set_bit(height as u8)
            }

            let (parent_key, parent_program, height) =
                if Some(&(height, sibling_key)) == tree_buf.keys().next() {
                    let (_leaf_index, sibling_program) = tree_buf
                        .remove(&(height, sibling_key))
                        .expect("pop sibling");
                    let parent_key = key.parent_path(height as u8);
                    let parent_program = merge_program(&program, &sibling_program, height as u8)?;
                    (parent_key, parent_program, height)
                } else {
                    let merge_height = leaves_path[leaf_index]
                        .front()
                        .map(|h| *h as usize)
                        .unwrap_or(height);
                    if height != merge_height {
                        debug_assert!(height < merge_height);
                        let parent_key = key.copy_bits(merge_height as u8..);
                        // skip zeros
                        tree_buf.insert((merge_height, parent_key), (leaf_index, program));
                        continue;
                    }
                    let (proof, proof_height) = proof.pop_front().expect("pop proof");
                    debug_assert_eq!(proof_height, leaves_path[leaf_index][0]);
                    let proof_height = proof_height as usize;
                    debug_assert!(height <= proof_height);
                    if height < proof_height {
                        height = proof_height;
                    }

                    let parent_key = key.parent_path(height as u8);
                    let parent_program = proof_program(&program, proof, height as u8);
                    (parent_key, parent_program, height)
                };

            leaves_path[leaf_index].pop_front();
            tree_buf.insert((height + 1, parent_key), (leaf_index, parent_program));
        }

        Err(Error::CorruptedProof)
    }

    /// Compute root from proof
    /// leaves: a vector of (key, value)
    ///
    /// return EmptyProof error when proof is empty
    /// return CorruptedProof error when proof is invalid
    pub fn compute_root<H: Hasher + Default>(self, mut leaves: Vec<(H256, H256)>) -> Result<H256> {
        if leaves.is_empty() {
            return Err(Error::EmptyKeys);
        } else if leaves.len() != self.leaves_count() {
            return Err(Error::IncorrectNumberOfLeaves {
                expected: self.leaves_count(),
                actual: leaves.len(),
            });
        }

        let (leaves_path, proof) = self.take();
        let mut leaves_path: Vec<VecDeque<_>> = leaves_path.into_iter().map(Into::into).collect();
        let mut proof: VecDeque<_> = proof.into();

        // sort leaves
        leaves.sort_unstable_by_key(|(k, _v)| *k);
        // tree_buf: (height, key) -> (key_index, node)
        let mut tree_buf: BTreeMap<_, _> = leaves
            .into_iter()
            .enumerate()
            .map(|(i, (k, v))| ((0, k), (i, hash_leaf::<H>(&k, &v))))
            .collect();
        // rebuild the tree from bottom to top
        while !tree_buf.is_empty() {
            // pop_front from tree_buf, the API is unstable
            let (&(mut height, key), &(leaf_index, node)) = tree_buf.iter().next().unwrap();
            tree_buf.remove(&(height, key));

            if proof.is_empty() && tree_buf.is_empty() {
                return Ok(node);
            } else if height == TREE_HEIGHT {
                if !proof.is_empty() {
                    return Err(Error::CorruptedProof);
                }
                return Ok(node);
            }

            let mut sibling_key = key.parent_path(height as u8);
            if !key.get_bit(height as u8) {
                sibling_key.set_bit(height as u8)
            }
            let (sibling, sibling_height) =
                if Some(&(height, sibling_key)) == tree_buf.keys().next() {
                    let (_leaf_index, sibling) = tree_buf
                        .remove(&(height, sibling_key))
                        .expect("pop sibling");
                    (sibling, height)
                } else {
                    let merge_height = leaves_path[leaf_index]
                        .front()
                        .map(|h| *h as usize)
                        .unwrap_or(height);
                    if height != merge_height {
                        debug_assert!(height < merge_height);
                        let parent_key = key.copy_bits(merge_height as u8..);
                        // skip zeros
                        tree_buf.insert((merge_height, parent_key), (leaf_index, node));
                        continue;
                    }
                    let (node, height) = proof.pop_front().expect("pop proof");
                    debug_assert_eq!(height, leaves_path[leaf_index][0]);
                    (node, height as usize)
                };
            debug_assert!(height <= sibling_height);
            if height < sibling_height {
                height = sibling_height;
            }
            // skip zero merkle path
            let parent_key = key.parent_path(height as u8);

            let parent = if key.get_bit(height as u8) {
                merge::<H>(&sibling, &node)
            } else {
                merge::<H>(&node, &sibling)
            };
            leaves_path[leaf_index].pop_front();
            tree_buf.insert((height + 1, parent_key), (leaf_index, parent));
        }

        Err(Error::CorruptedProof)
    }

    /// Verify merkle proof
    /// see compute_root_from_proof
    pub fn verify<H: Hasher + Default>(
        self,
        root: &H256,
        leaves: Vec<(H256, H256)>,
    ) -> Result<bool> {
        let calculated_root = self.compute_root::<H>(leaves)?;
        Ok(&calculated_root == root)
    }
}

fn leaf_program(leaf_index: usize) -> (Vec<u8>, Option<Range>) {
    let mut program = Vec::with_capacity(1);
    program.push(0x4C);
    (
        program,
        Some(Range {
            start: leaf_index,
            end: leaf_index + 1,
        }),
    )
}

fn proof_program(
    child: &(Vec<u8>, Option<Range>),
    proof: H256,
    height: u8,
) -> (Vec<u8>, Option<Range>) {
    let (child_program, child_range) = child;
    let mut program = Vec::new();
    program.resize(34 + child_program.len(), 0x50);
    program[..child_program.len()].copy_from_slice(child_program);
    program[child_program.len() + 1] = height;
    program[child_program.len() + 2..].copy_from_slice(proof.as_slice());
    (program, child_range.clone())
}

fn merge_program(
    a: &(Vec<u8>, Option<Range>),
    b: &(Vec<u8>, Option<Range>),
    height: u8,
) -> Result<(Vec<u8>, Option<Range>)> {
    let (a_program, a_range) = a;
    let (b_program, b_range) = b;
    let (a_comes_first, range) = if a_range.is_none() || b_range.is_none() {
        let range = if a_range.is_none() { b_range } else { a_range }
            .clone()
            .unwrap();
        (true, range)
    } else {
        let a_range = a_range.clone().unwrap();
        let b_range = b_range.clone().unwrap();
        if a_range.end == b_range.start {
            (
                true,
                Range {
                    start: a_range.start,
                    end: b_range.end,
                },
            )
        } else {
            return Err(Error::NonMergableRange);
        }
    };
    let mut program = Vec::new();
    program.resize(2 + a_program.len() + b_program.len(), 0x48);
    if a_comes_first {
        program[..a_program.len()].copy_from_slice(a_program);
        program[a_program.len()..a_program.len() + b_program.len()].copy_from_slice(b_program);
    } else {
        program[..b_program.len()].copy_from_slice(b_program);
        program[b_program.len()..a_program.len() + b_program.len()].copy_from_slice(a_program);
    }
    program[a_program.len() + b_program.len() + 1] = height;
    Ok((program, Some(range)))
}

/// An structure optimized for verify merkle proof
#[derive(Debug, Clone)]
pub struct CompiledMerkleProof(pub Vec<u8>);

impl CompiledMerkleProof {
    pub fn compute_root<H: Hasher + Default>(&self, mut leaves: Vec<(H256, H256)>) -> Result<H256> {
        leaves.sort_unstable_by_key(|(k, _v)| *k);
        let mut program_index = 0;
        let mut leave_index = 0;
        let mut stack = Vec::new();
        while program_index < self.0.len() {
            let code = self.0[program_index];
            program_index += 1;
            match code {
                // L
                0x4C => {
                    if leave_index >= leaves.len() {
                        return Err(Error::CorruptedStack);
                    }
                    let (k, v) = leaves[leave_index];
                    stack.push((k, hash_leaf::<H>(&k, &v)));
                    leave_index += 1;
                }
                // P
                0x50 => {
                    if stack.is_empty() {
                        return Err(Error::CorruptedStack);
                    }
                    if program_index + 33 > self.0.len() {
                        return Err(Error::CorruptedProof);
                    }
                    let height = self.0[program_index];
                    program_index += 1;
                    let mut data = [0u8; 32];
                    data.copy_from_slice(&self.0[program_index..program_index + 32]);
                    program_index += 32;
                    let proof = H256::from(data);
                    let (key, value) = stack.pop().unwrap();
                    let parent_key = key.parent_path(height);
                    let parent = if key.get_bit(height) {
                        merge::<H>(&proof, &value)
                    } else {
                        merge::<H>(&value, &proof)
                    };
                    stack.push((parent_key, parent));
                }
                // H
                0x48 => {
                    if stack.len() < 2 {
                        return Err(Error::CorruptedStack);
                    }
                    if program_index >= self.0.len() {
                        return Err(Error::CorruptedProof);
                    }
                    let height = self.0[program_index];
                    program_index += 1;
                    let (key_b, value_b) = stack.pop().unwrap();
                    let (key_a, value_a) = stack.pop().unwrap();
                    let parent_key_a = key_a.copy_bits(height..);
                    let parent_key_b = key_b.copy_bits(height..);
                    let a_set = key_a.get_bit(height);
                    let b_set = key_b.get_bit(height);
                    let mut sibling_key_a = parent_key_a;
                    if !a_set {
                        sibling_key_a.set_bit(height);
                    }
                    // Test if a and b are siblings
                    if !(sibling_key_a == parent_key_b && (a_set ^ b_set)) {
                        return Err(Error::NonSiblings);
                    }
                    let parent = if key_a.get_bit(height) {
                        merge::<H>(&value_b, &value_a)
                    } else {
                        merge::<H>(&value_a, &value_b)
                    };
                    stack.push((parent_key_a, parent));
                }
                _ => return Err(Error::InvalidCode(code)),
            }
        }
        if stack.len() != 1 {
            return Err(Error::CorruptedStack);
        }
        Ok(stack[0].1)
    }

    pub fn verify<H: Hasher + Default>(
        &self,
        root: &H256,
        leaves: Vec<(H256, H256)>,
    ) -> Result<bool> {
        let calculated_root = self.compute_root::<H>(leaves)?;
        Ok(&calculated_root == root)
    }
}