1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
use crate::BinaryNumber;
use is_sorted::IsSorted;
use std::collections::HashMap;
use std::fmt;
use std::ops::{Add, Deref};

mod bitwise_operations;
use bitwise_operations::BitwiseZipIter;

/// A sparse binary vector.
///
/// There are two main variants of a vector,
/// the owned one, [`SparseBinVec`](crate::SparseBinVec), and the borrowed one,
/// [`SparseBinSlice`](crate::SparseBinSlice).
/// Most of the time, you want to create a owned version.
/// However, some iterators, such as those defined on [`SparseBinMat`](crate::SparseBinMat)
/// returns the borrowed version.
#[derive(Debug, PartialEq, Eq, Hash, Clone)]
pub struct SparseBinVecBase<T> {
    positions: T,
    length: usize,
}

pub type SparseBinVec = SparseBinVecBase<Vec<usize>>;
pub type SparseBinSlice<'a> = SparseBinVecBase<&'a [usize]>;

impl SparseBinVec {
    /// Creates a new vector with the given length
    /// and list of non trivial positions.
    ///
    /// # Example
    ///
    /// ```
    /// # use sparse_bin_mat::SparseBinVec;
    /// let vector = SparseBinVec::new(5, vec![0, 2]);
    ///
    /// assert_eq!(vector.len(), 5);
    /// assert_eq!(vector.weight(), 2);
    ///
    /// ```
    ///
    /// # Panic
    ///
    /// Panics if a position is greater or equal to the length.
    ///
    /// ```should_panic
    /// # use sparse_bin_mat::SparseBinVec;
    /// let vector = SparseBinVec::new(2, vec![1, 3]);
    /// ```
    pub fn new(length: usize, mut positions: Vec<usize>) -> Self {
        for position in positions.iter() {
            if *position >= length {
                panic!(
                    "position {} is out of bound for length {}",
                    position, length
                );
            }
        }
        positions.sort();
        Self { positions, length }
    }

    /// Creates a vector fill with zeros of the given length.
    ///
    /// # Example
    ///
    /// ```
    /// # use sparse_bin_mat::SparseBinVec;
    /// let vector = SparseBinVec::zeros(3);
    ///
    /// assert_eq!(vector.len(), 3);
    /// assert_eq!(vector.weight(), 0);
    /// ```
    pub fn zeros(length: usize) -> Self {
        Self::new(length, Vec::new())
    }

    /// Creates an empty vector.
    ///
    /// This allocate minimally, so it is a good placeholder.
    ///
    /// # Example
    ///
    /// ```
    /// # use sparse_bin_mat::SparseBinVec;
    /// let vector = SparseBinVec::empty();
    ///
    /// assert_eq!(vector.len(), 0);
    /// assert_eq!(vector.weight(), 0);
    /// ```
    pub fn empty() -> Self {
        Self {
            length: 0,
            positions: Vec::new(),
        }
    }

    /// Converts the sparse binary vector to a `Vec` of
    /// the non trivial positions.
    ///
    /// # Example
    ///
    /// ```
    /// # use sparse_bin_mat::SparseBinVec;
    /// let vector = SparseBinVec::new(3, vec![0, 2]);
    ///
    /// assert_eq!(vector.to_positions_vec(), vec![0, 2]);
    /// ```
    pub fn to_positions_vec(self) -> Vec<usize> {
        self.positions
    }
}

impl<'a> SparseBinSlice<'a> {
    /// Creates a new vector with the given length
    /// and list of non trivial positions.
    ///
    /// This take a mutable reference to the positions in order to sort them.
    /// If you know the positions are sorted, you can instead use
    /// [`new_from_sorted`](SparseBinSlice::new_from_sorted).
    ///
    /// # Example
    ///
    /// ```
    /// # use sparse_bin_mat::SparseBinSlice;
    /// let mut positions = vec![2, 0];
    /// let vector = SparseBinSlice::new(5, &mut positions);
    ///
    /// assert_eq!(vector.len(), 5);
    /// assert_eq!(vector.weight(), 2);
    /// assert_eq!(vector.non_trivial_positions().collect::<Vec<_>>(), vec![0, 2]);
    /// ```
    ///
    /// # Panic
    ///
    /// Panics if a position is greater or equal to the length.
    ///
    /// ```should_panic
    /// # use sparse_bin_mat::SparseBinSlice;
    /// let vector = SparseBinSlice::new(2, &mut [1, 3]);
    /// ```
    pub fn new(length: usize, positions: &'a mut [usize]) -> Self {
        for position in positions.iter() {
            if *position >= length {
                panic!(
                    "position {} is out of bound for length {}",
                    position, length
                );
            }
        }
        positions.sort();
        Self { positions, length }
    }

    /// Creates a new vector with the given length and a sorted list of non trivial positions.
    ///
    //// # Example
    ///
    /// ```
    /// # use sparse_bin_mat::SparseBinSlice;
    /// let mut positions = vec![0, 2];
    /// let vector = SparseBinSlice::new_from_sorted(5, &positions);
    ///
    /// assert_eq!(vector.len(), 5);
    /// assert_eq!(vector.weight(), 2);
    /// ```
    ///
    /// # Panics
    ///
    /// Panics if the list of positions is unsorted or if a position is greater or equal to the
    /// length.
    ///
    /// ```should_panic
    /// # use sparse_bin_mat::SparseBinSlice;
    /// let mut positions = vec![2, 0];
    /// let vector = SparseBinSlice::new_from_sorted(5, &positions);
    /// ```
    pub fn new_from_sorted(length: usize, positions: &'a [usize]) -> Self {
        for position in positions.iter() {
            if *position >= length {
                panic!(
                    "position {} is out of bound for length {}",
                    position, length
                );
            }
        }
        // Waiting for the is_sorted API to stabilize in std.
        // https://github.com/rust-lang/rust/issues/53485
        if !IsSorted::is_sorted(&mut positions.iter()) {
            panic!("positions are unsorted");
        }
        Self { length, positions }
    }
}

impl<T: Deref<Target = [usize]>> SparseBinVecBase<T> {
    /// Returns the length (number of elements) of the vector.
    pub fn len(&self) -> usize {
        self.length
    }

    /// Returns the number of elements with value 1 in the vector.
    pub fn weight(&self) -> usize {
        self.positions.len()
    }

    /// Returns true if the length of the vector is 0.
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Returns true of all the element in the vector are 0.
    pub fn is_zero(&self) -> bool {
        self.weight() == 0
    }

    /// Returns the value at the given position
    /// or None if the position is out of bound.
    ///
    /// # Example
    ///
    /// ```
    /// # use sparse_bin_mat::SparseBinVec;
    /// let vector = SparseBinVec::new(3, vec![0, 2]);
    ///
    /// assert_eq!(vector.get(0), Some(1));
    /// assert_eq!(vector.get(1), Some(0));
    /// assert_eq!(vector.get(2), Some(1));
    /// assert_eq!(vector.get(3), None);
    /// ```
    pub fn get(&self, position: usize) -> Option<BinaryNumber> {
        if position < self.len() {
            if self.positions.contains(&position) {
                Some(1)
            } else {
                Some(0)
            }
        } else {
            None
        }
    }

    /// Returns true if the value at the given position 0
    /// or None if the position is out of bound.
    ///
    /// # Example
    ///
    /// ```
    /// # use sparse_bin_mat::SparseBinVec;
    /// let vector = SparseBinVec::new(3, vec![0, 2]);
    ///
    /// assert_eq!(vector.is_zero_at(0), Some(false));
    /// assert_eq!(vector.is_zero_at(1), Some(true));
    /// assert_eq!(vector.is_zero_at(2), Some(false));
    /// assert_eq!(vector.is_zero_at(3), None);
    /// ```
    pub fn is_zero_at(&self, position: usize) -> Option<bool> {
        self.get(position).map(|value| value == 0)
    }

    /// Returns true if the value at the given position 1
    /// or None if the position is out of bound.
    ///
    /// # Example
    ///
    /// ```
    /// # use sparse_bin_mat::SparseBinVec;
    /// let vector = SparseBinVec::new(3, vec![0, 2]);
    ///
    /// assert_eq!(vector.is_one_at(0), Some(true));
    /// assert_eq!(vector.is_one_at(1), Some(false));
    /// assert_eq!(vector.is_one_at(2), Some(true));
    /// assert_eq!(vector.is_one_at(3), None);
    /// ```
    pub fn is_one_at(&self, position: usize) -> Option<bool> {
        self.get(position).map(|value| value == 1)
    }

    /// Returns an iterator over all positions where the value is 1.
    ///
    /// # Example
    ///
    /// ```
    /// # use sparse_bin_mat::SparseBinVec;
    /// let vector = SparseBinVec::new(5, vec![0, 1, 3]);
    /// let mut iter = vector.non_trivial_positions();
    ///
    /// assert_eq!(iter.next(), Some(0));
    /// assert_eq!(iter.next(), Some(1));
    /// assert_eq!(iter.next(), Some(3));
    /// assert_eq!(iter.next(), None);
    /// ```
    pub fn non_trivial_positions<'a>(&'a self) -> impl Iterator<Item = usize> + 'a {
        self.positions.iter().cloned()
    }

    /// Returns the concatenation of two vectors.
    ///
    /// # Example
    ///
    /// ```
    /// # use sparse_bin_mat::SparseBinVec;
    /// let left_vector = SparseBinVec::new(3, vec![0, 1]);
    /// let right_vector = SparseBinVec::new(4, vec![2, 3]);
    ///
    /// let concatened = left_vector.concat(&right_vector);
    ///
    /// let expected = SparseBinVec::new(7, vec![0, 1, 5, 6]);
    ///
    /// assert_eq!(concatened, expected);
    /// ```
    pub fn concat(&self, other: &Self) -> SparseBinVec {
        let positions = self
            .non_trivial_positions()
            .chain(other.non_trivial_positions().map(|pos| pos + self.len()))
            .collect();
        SparseBinVec::new(self.len() + other.len(), positions)
    }

    /// Returns a new vector keeping only the given positions.
    ///
    /// Positions are relabeled to the fit new number of positions.
    ///
    /// # Example
    ///
    /// ```
    /// use sparse_bin_mat::SparseBinVec;
    /// let vector = SparseBinVec::new(5, vec![0, 2, 4]);
    /// let truncated = SparseBinVec::new(3, vec![0, 2]);
    ///
    /// assert_eq!(vector.keep_only_positions(&[0, 1, 2]), truncated);
    /// assert_eq!(vector.keep_only_positions(&[1, 2]).len(), 2);
    /// ```
    ///
    /// # Panic
    ///
    /// Panics if some positions are out of bound.
    pub fn keep_only_positions(&self, positions: &[usize]) -> SparseBinVec {
        for position in positions {
            if *position >= self.len() {
                panic!(
                    "position {} is out of bound for length {}",
                    position,
                    self.len()
                );
            }
        }
        let old_to_new_positions_map = positions
            .iter()
            .enumerate()
            .map(|(new, old)| (old, new))
            .collect::<HashMap<_, _>>();
        let new_positions = self
            .non_trivial_positions()
            .filter_map(|position| old_to_new_positions_map.get(&position).cloned())
            .collect();
        SparseBinVec::new(positions.len(), new_positions)
    }

    /// Returns a truncated vector where the given positions are removed.
    ///
    /// Positions are relabeled to fit the new number of positions.
    ///
    /// # Example
    ///
    /// ```
    /// # use sparse_bin_mat::SparseBinVec;
    /// let vector = SparseBinVec::new(5, vec![0, 2, 4]);
    /// let truncated = SparseBinVec::new(3, vec![0, 2]);
    ///
    /// assert_eq!(vector.without_positions(&[3, 4]), truncated);
    /// assert_eq!(vector.without_positions(&[1, 2]).len(), 3);
    /// ```
    ///
    /// # Panic
    ///
    /// Panics if some positions are out of bound.
    pub fn without_positions(&self, positions: &[usize]) -> SparseBinVec {
        let to_keep: Vec<usize> = (0..self.len()).filter(|x| !positions.contains(x)).collect();
        self.keep_only_positions(&to_keep)
    }

    /// Returns a view over the vector.
    pub fn as_view(&self) -> SparseBinSlice {
        SparseBinSlice {
            length: self.length,
            positions: &self.positions,
        }
    }

    /// Returns a slice of the non trivial positions.
    pub fn as_slice(&self) -> &[usize] {
        self.positions.as_ref()
    }

    /// Returns an owned version of the vector.
    pub fn to_owned(self) -> SparseBinVec {
        SparseBinVec {
            length: self.length,
            positions: self.positions.to_owned(),
        }
    }

    /// Returns the dot product of two vectors.
    ///
    /// # Example
    ///
    /// ```
    /// # use sparse_bin_mat::SparseBinVec;
    /// let first = SparseBinVec::new(4, vec![0, 1, 2]);
    /// let second = SparseBinVec::new(4, vec![1, 2, 3]);
    /// let third = SparseBinVec::new(4, vec![0, 3]);
    ///
    /// assert_eq!(first.dot_with(&second), 0);
    /// assert_eq!(first.dot_with(&third), 1);
    /// ```
    pub fn dot_with<S: Deref<Target = [usize]>>(
        &self,
        other: &SparseBinVecBase<S>,
    ) -> BinaryNumber {
        BitwiseZipIter::new(self.as_view(), other.as_view())
            .fold(0, |sum, x| sum ^ x.first_row_value * x.second_row_value)
    }
}

impl<S, T> Add<&SparseBinVecBase<S>> for &SparseBinVecBase<T>
where
    S: Deref<Target = [usize]>,
    T: Deref<Target = [usize]>,
{
    type Output = SparseBinVec;

    fn add(self, other: &SparseBinVecBase<S>) -> SparseBinVec {
        if self.len() != other.len() {
            panic!(
                "vector of length {} can't be added to vector of length {}",
                self.len(),
                other.len()
            );
        }
        let positions = BitwiseZipIter::new(self.as_view(), other.as_view())
            .filter_map(|x| {
                if x.first_row_value ^ x.second_row_value == 1 {
                    Some(x.position)
                } else {
                    None
                }
            })
            .collect();
        SparseBinVec::new(self.len(), positions)
    }
}

impl<T: Deref<Target = [usize]>> fmt::Display for SparseBinVecBase<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{:?}", self.positions.deref())
    }
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn positions_are_sorted_on_construction() {
        let vector = SparseBinVec::new(4, vec![3, 0, 2]);

        assert_eq!(
            vector.non_trivial_positions().collect::<Vec<_>>(),
            vec![0, 2, 3]
        )
    }

    #[test]
    fn addition() {
        let first_vector = SparseBinVec::new(6, vec![0, 2, 4]);
        let second_vector = SparseBinVec::new(6, vec![0, 1, 2]);
        let sum = SparseBinVec::new(6, vec![1, 4]);
        assert_eq!(&first_vector + &second_vector, sum);
    }

    #[test]
    fn panics_on_addition_if_different_length() {
        let vector_6 = SparseBinVec::new(6, vec![0, 2, 4]);
        let vector_2 = SparseBinVec::new(2, vec![0]);

        let result = std::panic::catch_unwind(|| &vector_6 + &vector_2);
        assert!(result.is_err());
    }
}