1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
use std::ops::Mul;

/// Measure of the cardinality (#) of a set.
///
/// `Card` is used to represent the number of possible values that are contained by a space. Take,
/// for example, a 2-dimensional space, each with a finite set of values. In this case we have the
/// following:
/// ```
/// use spaces::{
///     Space, Card, PairSpace,
///     discrete::Ordinal,
/// };
///
/// let d1 = Ordinal::new(5);
/// let d2 = Ordinal::new(10);
/// let space = PairSpace::new(d1, d2);
///
/// assert_eq!(space.card(), Card::Finite(50));
/// ```
///
/// Internally, this above code does the following:
///
/// ```
/// use spaces::Card;
///
/// let s1 = Card::Finite(5);
/// let s2 = Card::Finite(10);
///
/// assert_eq!(s1 * s2, Card::Finite(50));
/// ```
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
#[cfg_attr(feature = "serialize", derive(Serialize, Deserialize))]
pub enum Card {
    Finite(usize),
    Infinite,
}

impl Mul for Card {
    type Output = Card;

    fn mul(self, rhs: Card) -> Card {
        match (self, rhs) {
            (Card::Infinite, _) | (_, Card::Infinite) => Card::Infinite,
            (Card::Finite(0), Card::Finite(a)) | (Card::Finite(a), Card::Finite(0)) =>
                Card::Finite(a),
            (Card::Finite(ls), Card::Finite(rs)) => Card::Finite(ls * rs),
        }
    }
}

impl Into<usize> for Card {
    fn into(self) -> usize {
        match self {
            Card::Finite(e) => e,
            _ => panic!("Card type has no integer representation."),
        }
    }
}

#[cfg(test)]
mod tests {
    use super::Card;

    #[test]
    fn test_equality() {
        assert_eq!(Card::Infinite, Card::Infinite);

        assert_eq!(Card::Finite(0), Card::Finite(0));
        assert_eq!(Card::Finite(1), Card::Finite(1));
        assert_eq!(Card::Finite(5), Card::Finite(5));
        assert_eq!(Card::Finite(10), Card::Finite(10));
    }

    #[test]
    fn test_inequality() {
        assert_ne!(Card::Finite(0), Card::Infinite);

        assert_ne!(Card::Infinite, Card::Finite(0));
        assert_ne!(Card::Infinite, Card::Finite(1));

        assert_ne!(Card::Finite(0), Card::Finite(1));
        assert_ne!(Card::Finite(1), Card::Finite(0));
        assert_ne!(Card::Finite(1), Card::Infinite);
        assert_ne!(Card::Finite(1), Card::Finite(10));
    }

    #[test]
    fn test_mul() {
        assert_eq!(Card::Finite(0), Card::Finite(0));
        assert_eq!(Card::Infinite * Card::Infinite, Card::Infinite);

        assert_eq!(Card::Finite(0) * Card::Infinite, Card::Infinite);
        assert_eq!(Card::Infinite * Card::Finite(0), Card::Infinite);

        assert_eq!(Card::Finite(1) * Card::Infinite, Card::Infinite);
        assert_eq!(Card::Finite(5) * Card::Infinite, Card::Infinite);

        assert_eq!(Card::Finite(1) * Card::Finite(1), Card::Finite(1));
        assert_eq!(Card::Finite(1) * Card::Finite(5), Card::Finite(5));
        assert_eq!(Card::Finite(5) * Card::Finite(1), Card::Finite(5));
        assert_eq!(Card::Finite(5) * Card::Finite(5), Card::Finite(25));
    }

    #[test]
    #[should_panic]
    fn test_into_infinite() {
        let s = Card::Infinite;
        let _: usize = s.into();
    }

    #[test]
    fn test_into_finite() {
        for i in vec![0, 1, 5, 10] {
            let d = Card::Finite(i);
            let v: usize = d.into();

            assert_eq!(v, i);
        }
    }
}