1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
// This file is part of Substrate.

// Copyright (C) 2020 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// 	http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Proc macro for a npos compact assignment.

use proc_macro::TokenStream;
use proc_macro2::{TokenStream as TokenStream2, Span, Ident};
use proc_macro_crate::crate_name;
use quote::quote;
use syn::{parse::{Parse, ParseStream, Result}};

mod assignment;
mod codec;

// prefix used for struct fields in compact.
const PREFIX: &'static str = "votes";

pub(crate) fn syn_err(message: &'static str) -> syn::Error {
	syn::Error::new(Span::call_site(), message)
}

/// Generates a struct to store the election result in a small way. This can encode a structure
/// which is the equivalent of a `sp_npos_elections::Assignment<_>`.
///
/// The following data types can be configured by the macro.
///
/// - The identifier of the voter. This can be any type that supports `parity-scale-codec`'s compact
///   encoding.
/// - The identifier of the target. This can be any type that supports `parity-scale-codec`'s
///   compact encoding.
/// - The accuracy of the ratios. This must be one of the `PerThing` types defined in
///   `sp-arithmetic`.
///
/// Moreover, the maximum number of edges per voter (distribution per assignment) also need to be
/// specified. Attempting to convert from/to an assignment with more distributions will fail.
///
///
/// For example, the following generates a public struct with name `TestSolution` with `u16` voter
/// type, `u8` target type and `Perbill` accuracy with maximum of 8 edges per voter.
///
/// ```ignore
/// generate_solution_type!(pub struct TestSolution<u16, u8, Perbill>::(8))
/// ```
///
/// The given struct provides function to convert from/to Assignment:
///
/// - [`from_assignment()`].
/// - [`fn into_assignment()`].
///
/// The generated struct is by default deriving both `Encode` and `Decode`. This is okay but could
/// lead to many 0s in the solution. If prefixed with `#[compact]`, then a custom compact encoding
/// for numbers will be used, similar to how `parity-scale-codec`'s `Compact` works.
///
/// ```ignore
/// generate_solution_type!(
///     #[compact]
///     pub struct TestSolutionCompact<u16, u8, Perbill>::(8)
/// )
/// ```
#[proc_macro]
pub fn generate_solution_type(item: TokenStream) -> TokenStream {
	let SolutionDef {
		vis,
		ident,
		count,
		voter_type,
		target_type,
		weight_type,
		compact_encoding,
	} = syn::parse_macro_input!(item as SolutionDef);

	let imports = imports().unwrap_or_else(|e| e.to_compile_error());

	let solution_struct = struct_def(
		vis,
		ident.clone(),
		count,
		voter_type.clone(),
		target_type.clone(),
		weight_type.clone(),
		compact_encoding,
	).unwrap_or_else(|e| e.to_compile_error());

	let assignment_impls = assignment::assignment(
		ident.clone(),
		voter_type.clone(),
		target_type.clone(),
		weight_type.clone(),
		count,
	);

	quote!(
		#imports
		#solution_struct
		#assignment_impls
	).into()
}

fn struct_def(
	vis: syn::Visibility,
	ident: syn::Ident,
	count: usize,
	voter_type: syn::Type,
	target_type: syn::Type,
	weight_type: syn::Type,
	compact_encoding: bool,
) -> Result<TokenStream2> {
	if count <= 2 {
		Err(syn_err("cannot build compact solution struct with capacity less than 3."))?
	}

	let singles = {
		let name = field_name_for(1);
		quote!(
			#name: Vec<(#voter_type, #target_type)>,
		)
	};

	let doubles = {
		let name = field_name_for(2);
		quote!(
			#name: Vec<(#voter_type, (#target_type, #weight_type), #target_type)>,
		)
	};

	let rest = (3..=count).map(|c| {
		let field_name = field_name_for(c);
		let array_len = c - 1;
		quote!(
			#field_name: Vec<(
				#voter_type,
				[(#target_type, #weight_type); #array_len],
				#target_type
			)>,
		)
	}).collect::<TokenStream2>();

	let len_impl = len_impl(count);
	let edge_count_impl = edge_count_impl(count);
	let unique_targets_impl = unique_targets_impl(count);

	let derives_and_maybe_compact_encoding = if compact_encoding {
		// custom compact encoding.
		let compact_impl = codec::codec_impl(
			ident.clone(),
			voter_type.clone(),
			target_type.clone(),
			weight_type.clone(),
			count,
		);
		quote!{
			#compact_impl
			#[derive(Default, PartialEq, Eq, Clone, Debug)]
		}
	} else {
		// automatically derived.
		quote!(#[derive(Default, PartialEq, Eq, Clone, Debug, _npos::codec::Encode, _npos::codec::Decode)])
	};

	Ok(quote! (
		/// A struct to encode a election assignment in a compact way.
		#derives_and_maybe_compact_encoding
		#vis struct #ident { #singles #doubles #rest }

		impl _npos::VotingLimit for #ident {
			const LIMIT: usize = #count;
		}

		impl #ident {
			/// Get the length of all the assignments that this type is encoding. This is basically
			/// the same as the number of assignments, or the number of voters in total.
			pub fn len(&self) -> usize {
				let mut all_len = 0usize;
				#len_impl
				all_len
			}

			/// Get the total count of edges.
			pub fn edge_count(&self) -> usize {
				let mut all_edges = 0usize;
				#edge_count_impl
				all_edges
			}

			/// Get the number of unique targets in the whole struct.
			///
			/// Once presented with a list of winners, this set and the set of winners must be
			/// equal.
			///
			/// The resulting indices are sorted.
			pub fn unique_targets(&self) -> Vec<#target_type> {
				let mut all_targets: Vec<#target_type> = Vec::with_capacity(self.average_edge_count());
				let mut maybe_insert_target = |t: #target_type| {
					match all_targets.binary_search(&t) {
						Ok(_) => (),
						Err(pos) => all_targets.insert(pos, t)
					}
				};

				#unique_targets_impl

				all_targets
			}

			/// Get the average edge count.
			pub fn average_edge_count(&self) -> usize {
				self.edge_count().checked_div(self.len()).unwrap_or(0)
			}
		}
	))
}

fn len_impl(count: usize) -> TokenStream2 {
	(1..=count).map(|c| {
		let field_name = field_name_for(c);
		quote!(
			all_len = all_len.saturating_add(self.#field_name.len());
		)
	}).collect::<TokenStream2>()
}

fn edge_count_impl(count: usize) -> TokenStream2 {
	(1..=count).map(|c| {
		let field_name = field_name_for(c);
		quote!(
			all_edges = all_edges.saturating_add(
				self.#field_name.len().saturating_mul(#c as usize)
			);
		)
	}).collect::<TokenStream2>()
}

fn unique_targets_impl(count: usize) -> TokenStream2 {
	let unique_targets_impl_single = {
		let field_name = field_name_for(1);
		quote! {
			self.#field_name.iter().for_each(|(_, t)| {
				maybe_insert_target(*t);
			});
		}
	};

	let unique_targets_impl_double = {
		let field_name = field_name_for(2);
		quote! {
			self.#field_name.iter().for_each(|(_, (t1, _), t2)| {
				maybe_insert_target(*t1);
				maybe_insert_target(*t2);
			});
		}
	};

	let unique_targets_impl_rest = (3..=count).map(|c| {
		let field_name = field_name_for(c);
		quote! {
			self.#field_name.iter().for_each(|(_, inners, t_last)| {
				inners.iter().for_each(|(t, _)| {
					maybe_insert_target(*t);
				});
				maybe_insert_target(*t_last);
			});
		}
	}).collect::<TokenStream2>();

	quote! {
		#unique_targets_impl_single
		#unique_targets_impl_double
		#unique_targets_impl_rest
	}
}

fn imports() -> Result<TokenStream2> {
	if std::env::var("CARGO_PKG_NAME").unwrap() == "sp-npos-elections" {
		Ok(quote! {
			use crate as _npos;
		})
	} else {
		match crate_name("sp-npos-elections") {
			Ok(sp_npos_elections) => {
				let ident = syn::Ident::new(&sp_npos_elections, Span::call_site());
				Ok(quote!( extern crate #ident as _npos; ))
			},
			Err(e) => Err(syn::Error::new(Span::call_site(), &e)),
		}
	}
}

struct SolutionDef {
	vis: syn::Visibility,
	ident: syn::Ident,
	voter_type: syn::Type,
	target_type: syn::Type,
	weight_type: syn::Type,
	count: usize,
	compact_encoding: bool,
}

fn check_compact_attr(input: ParseStream) -> Result<bool> {
	let mut attrs = input.call(syn::Attribute::parse_outer).unwrap_or_default();
	if attrs.len() == 1 {
		let attr = attrs.pop().expect("Vec with len 1 can be popped.");
		if attr.path.segments.len() == 1 {
			let segment = attr.path.segments.first().expect("Vec with len 1 can be popped.");
			if segment.ident == Ident::new("compact", Span::call_site()) {
				Ok(true)
			} else {
				Err(syn_err("generate_solution_type macro can only accept #[compact] attribute."))
			}
		} else {
			Err(syn_err("generate_solution_type macro can only accept #[compact] attribute."))
		}
	} else {
		Ok(false)
	}
}

/// #[compact] pub struct CompactName::<u32, u32, u32>()
impl Parse for SolutionDef {
	fn parse(input: ParseStream) -> syn::Result<Self> {
		// optional #[compact]
		let compact_encoding = check_compact_attr(input)?;

		// <vis> struct <name>
		let vis: syn::Visibility = input.parse()?;
		let _ = <syn::Token![struct]>::parse(input)?;
		let ident: syn::Ident = input.parse()?;

		// ::<V, T, W>
		let _ = <syn::Token![::]>::parse(input)?;
		let generics: syn::AngleBracketedGenericArguments = input.parse()?;

		if generics.args.len() != 3 {
			return Err(syn_err("Must provide 3 generic args."))
		}

		let mut types: Vec<syn::Type> = generics.args.iter().map(|t|
			match t {
				syn::GenericArgument::Type(ty) => Ok(ty.clone()),
				_ => Err(syn_err("Wrong type of generic provided. Must be a `type`.")),
			}
		).collect::<Result<_>>()?;

		let weight_type = types.pop().expect("Vector of length 3 can be popped; qed");
		let target_type = types.pop().expect("Vector of length 2 can be popped; qed");
		let voter_type = types.pop().expect("Vector of length 1 can be popped; qed");

		// (<count>)
		let count_expr: syn::ExprParen = input.parse()?;
		let expr = count_expr.expr;
		let expr_lit = match *expr {
			syn::Expr::Lit(count_lit) => count_lit.lit,
			_ => return Err(syn_err("Count must be literal."))
		};
		let int_lit = match expr_lit {
			syn::Lit::Int(int_lit) => int_lit,
			_ => return Err(syn_err("Count must be int literal."))
		};
		let count = int_lit.base10_parse::<usize>()?;

		Ok(Self { vis, ident, voter_type, target_type, weight_type, count, compact_encoding } )
	}
}

fn field_name_for(n: usize) -> Ident {
	Ident::new(&format!("{}{}", PREFIX, n), Span::call_site())
}