1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
use crate::native_loader;
use crate::system_instruction_processor;
use solana_sdk::account::{create_keyed_accounts, Account, KeyedAccount};
use solana_sdk::instruction::{CompiledInstruction, InstructionError};
use solana_sdk::instruction_processor_utils;
use solana_sdk::message::Message;
use solana_sdk::pubkey::Pubkey;
use solana_sdk::system_program;
use solana_sdk::transaction::TransactionError;
use std::collections::HashMap;
use std::sync::RwLock;

#[cfg(unix)]
use libloading::os::unix::*;
#[cfg(windows)]
use libloading::os::windows::*;

/// Return true if the slice has any duplicate elements
pub fn has_duplicates<T: PartialEq>(xs: &[T]) -> bool {
    // Note: This is an O(n^2) algorithm, but requires no heap allocations. The benchmark
    // `bench_has_duplicates` in benches/message_processor.rs shows that this implementation is
    // ~50 times faster than using HashSet for very short slices.
    for i in 1..xs.len() {
        if xs[i..].contains(&xs[i - 1]) {
            return true;
        }
    }
    false
}

/// Get mut references to a subset of elements.
fn get_subset_unchecked_mut<'a, T>(
    xs: &'a mut [T],
    indexes: &[u8],
) -> Result<Vec<&'a mut T>, InstructionError> {
    // Since the compiler doesn't know the indexes are unique, dereferencing
    // multiple mut elements is assumed to be unsafe. If, however, all
    // indexes are unique, it's perfectly safe. The returned elements will share
    // the liftime of the input slice.

    // Make certain there are no duplicate indexes. If there are, return an error
    // because we can't return multiple mut references to the same element.
    if has_duplicates(indexes) {
        return Err(InstructionError::DuplicateAccountIndex);
    }

    Ok(indexes
        .iter()
        .map(|i| {
            let ptr = &mut xs[*i as usize] as *mut T;
            unsafe { &mut *ptr }
        })
        .collect())
}

fn verify_instruction(
    program_id: &Pubkey,
    pre_program_id: &Pubkey,
    pre_lamports: u64,
    pre_data: &[u8],
    account: &Account,
) -> Result<(), InstructionError> {
    // Verify the transaction

    // Make sure that program_id is still the same or this was just assigned by the system program
    if *pre_program_id != account.owner && !system_program::check_id(&program_id) {
        return Err(InstructionError::ModifiedProgramId);
    }
    // For accounts unassigned to the program, the individual balance of each accounts cannot decrease.
    if *program_id != account.owner && pre_lamports > account.lamports {
        return Err(InstructionError::ExternalAccountLamportSpend);
    }
    // For accounts unassigned to the program, the data may not change.
    if *program_id != account.owner
        && !system_program::check_id(&program_id)
        && pre_data != &account.data[..]
    {
        return Err(InstructionError::ExternalAccountDataModified);
    }
    Ok(())
}

pub type ProcessInstruction =
    fn(&Pubkey, &mut [KeyedAccount], &[u8], u64) -> Result<(), InstructionError>;

pub type SymbolCache = RwLock<HashMap<Vec<u8>, Symbol<instruction_processor_utils::Entrypoint>>>;

pub struct MessageProcessor {
    instruction_processors: Vec<(Pubkey, ProcessInstruction)>,
    symbol_cache: SymbolCache,
}

impl Default for MessageProcessor {
    fn default() -> Self {
        let instruction_processors: Vec<(Pubkey, ProcessInstruction)> = vec![(
            system_program::id(),
            system_instruction_processor::process_instruction,
        )];

        Self {
            instruction_processors,
            symbol_cache: RwLock::new(HashMap::new()),
        }
    }
}

impl MessageProcessor {
    /// Add a static entrypoint to intercept intructions before the dynamic loader.
    pub fn add_instruction_processor(
        &mut self,
        program_id: Pubkey,
        process_instruction: ProcessInstruction,
    ) {
        self.instruction_processors
            .push((program_id, process_instruction));
    }

    /// Process an instruction
    /// This method calls the instruction's program entrypoint method
    fn process_instruction(
        &self,
        message: &Message,
        instruction: &CompiledInstruction,
        executable_accounts: &mut [(Pubkey, Account)],
        program_accounts: &mut [&mut Account],
        tick_height: u64,
    ) -> Result<(), InstructionError> {
        let program_id = instruction.program_id(&message.account_keys);

        let mut keyed_accounts = create_keyed_accounts(executable_accounts);
        let mut keyed_accounts2: Vec<_> = instruction
            .accounts
            .iter()
            .map(|&index| {
                let index = index as usize;
                let key = &message.account_keys[index];
                (key, index < message.header.num_required_signatures as usize)
            })
            .zip(program_accounts.iter_mut())
            .map(|((key, is_signer), account)| KeyedAccount::new(key, is_signer, account))
            .collect();
        keyed_accounts.append(&mut keyed_accounts2);

        for (id, process_instruction) in &self.instruction_processors {
            if id == program_id {
                return process_instruction(
                    &program_id,
                    &mut keyed_accounts[1..],
                    &instruction.data,
                    tick_height,
                );
            }
        }

        native_loader::entrypoint(
            &program_id,
            &mut keyed_accounts,
            &instruction.data,
            tick_height,
            &self.symbol_cache,
        )
    }

    /// Execute an instruction
    /// This method calls the instruction's program entrypoint method and verifies that the result of
    /// the call does not violate the bank's accounting rules.
    /// The accounts are committed back to the bank only if this function returns Ok(_).
    fn execute_instruction(
        &self,
        message: &Message,
        instruction: &CompiledInstruction,
        executable_accounts: &mut [(Pubkey, Account)],
        program_accounts: &mut [&mut Account],
        tick_height: u64,
    ) -> Result<(), InstructionError> {
        let program_id = instruction.program_id(&message.account_keys);
        // TODO: the runtime should be checking read/write access to memory
        // we are trusting the hard-coded programs not to clobber or allocate
        let pre_total: u64 = program_accounts.iter().map(|a| a.lamports).sum();
        let pre_data: Vec<_> = program_accounts
            .iter_mut()
            .map(|a| (a.owner, a.lamports, a.data.clone()))
            .collect();

        self.process_instruction(
            message,
            instruction,
            executable_accounts,
            program_accounts,
            tick_height,
        )?;

        // Verify the instruction
        for ((pre_program_id, pre_lamports, pre_data), post_account) in
            pre_data.iter().zip(program_accounts.iter())
        {
            verify_instruction(
                &program_id,
                pre_program_id,
                *pre_lamports,
                pre_data,
                post_account,
            )?;
        }
        // The total sum of all the lamports in all the accounts cannot change.
        let post_total: u64 = program_accounts.iter().map(|a| a.lamports).sum();
        if pre_total != post_total {
            return Err(InstructionError::UnbalancedInstruction);
        }
        Ok(())
    }

    /// Process a message.
    /// This method calls each instruction in the message over the set of loaded Accounts
    /// The accounts are committed back to the bank only if every instruction succeeds
    pub fn process_message(
        &self,
        message: &Message,
        loaders: &mut [Vec<(Pubkey, Account)>],
        accounts: &mut [Account],
        tick_height: u64,
    ) -> Result<(), TransactionError> {
        for (instruction_index, instruction) in message.instructions.iter().enumerate() {
            let executable_index = message
                .program_position(instruction.program_ids_index as usize)
                .ok_or(TransactionError::InvalidAccountIndex)?;
            let executable_accounts = &mut loaders[executable_index];
            let mut program_accounts = get_subset_unchecked_mut(accounts, &instruction.accounts)
                .map_err(|err| TransactionError::InstructionError(instruction_index as u8, err))?;
            // TODO: `get_subset_unchecked_mut` panics on an index out of bounds if an executable
            // account is also included as a regular account for an instruction, because the
            // executable account is not passed in as part of the accounts slice
            self.execute_instruction(
                message,
                instruction,
                executable_accounts,
                &mut program_accounts,
                tick_height,
            )
            .map_err(|err| TransactionError::InstructionError(instruction_index as u8, err))?;
        }
        Ok(())
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_has_duplicates() {
        assert!(!has_duplicates(&[1, 2]));
        assert!(has_duplicates(&[1, 2, 1]));
    }

    #[test]
    fn test_get_subset_unchecked_mut() {
        assert_eq!(
            get_subset_unchecked_mut(&mut [7, 8], &[0]).unwrap(),
            vec![&mut 7]
        );
        assert_eq!(
            get_subset_unchecked_mut(&mut [7, 8], &[0, 1]).unwrap(),
            vec![&mut 7, &mut 8]
        );
    }

    #[test]
    fn test_get_subset_unchecked_mut_duplicate_index() {
        // This panics, because it assumes duplicate detection is done elsewhere.
        assert_eq!(
            get_subset_unchecked_mut(&mut [7, 8], &[0, 0]).unwrap_err(),
            InstructionError::DuplicateAccountIndex
        );
    }

    #[test]
    #[should_panic]
    fn test_get_subset_unchecked_mut_out_of_bounds() {
        // This panics, because it assumes bounds validation is done elsewhere.
        get_subset_unchecked_mut(&mut [7, 8], &[2]).unwrap();
    }

    #[test]
    fn test_verify_instruction_change_program_id() {
        fn change_program_id(
            ix: &Pubkey,
            pre: &Pubkey,
            post: &Pubkey,
        ) -> Result<(), InstructionError> {
            verify_instruction(&ix, &pre, 0, &[], &Account::new(0, 0, post))
        }

        let system_program_id = system_program::id();
        let alice_program_id = Pubkey::new_rand();
        let mallory_program_id = Pubkey::new_rand();

        assert_eq!(
            change_program_id(&system_program_id, &system_program_id, &alice_program_id),
            Ok(()),
            "system program should be able to change the account owner"
        );
        assert_eq!(
            change_program_id(&mallory_program_id, &system_program_id, &alice_program_id),
            Err(InstructionError::ModifiedProgramId),
            "malicious Mallory should not be able to change the account owner"
        );
    }

    #[test]
    fn test_verify_instruction_change_data() {
        fn change_data(program_id: &Pubkey) -> Result<(), InstructionError> {
            let alice_program_id = Pubkey::new_rand();
            let account = Account::new(0, 0, &alice_program_id);
            verify_instruction(&program_id, &alice_program_id, 0, &[42], &account)
        }

        let system_program_id = system_program::id();
        let mallory_program_id = Pubkey::new_rand();

        assert_eq!(
            change_data(&system_program_id),
            Ok(()),
            "system program should be able to change the data"
        );
        assert_eq!(
            change_data(&mallory_program_id),
            Err(InstructionError::ExternalAccountDataModified),
            "malicious Mallory should not be able to change the account data"
        );
    }
}