1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
//! GF(2^16) implementation.
//!
//! More accurately, this is a `GF((2^8)^2)` implementation which builds an extension
//! field of `GF(2^8)`, as defined in the `galois_8` module.

use crate::galois_8;
use std::ops::{Add, Div, Mul, Sub};

// the irreducible polynomial used as a modulus for the field.
// print R.irreducible_element(2,algorithm="first_lexicographic" )
// x^2 + a*x + a^7
//
// hopefully it is a fast polynomial
const EXT_POLY: [u8; 3] = [1, 2, 128];

/// The field GF(2^16).
#[derive(Debug, Default, Copy, Clone, PartialEq, Eq)]
pub struct Field;

impl crate::Field for Field {
    const ORDER: usize = 65536;

    type Elem = [u8; 2];

    fn add(a: [u8; 2], b: [u8; 2]) -> [u8; 2] {
        (Element(a) + Element(b)).0
    }

    fn mul(a: [u8; 2], b: [u8; 2]) -> [u8; 2] {
        (Element(a) * Element(b)).0
    }

    fn div(a: [u8; 2], b: [u8; 2]) -> [u8; 2] {
        (Element(a) / Element(b)).0
    }

    fn exp(elem: [u8; 2], n: usize) -> [u8; 2] {
        Element(elem).exp(n).0
    }

    fn zero() -> [u8; 2] {
        [0; 2]
    }

    fn one() -> [u8; 2] {
        [0, 1]
    }

    fn nth_internal(n: usize) -> [u8; 2] {
        [(n >> 8) as u8, n as u8]
    }
}

/// Type alias of ReedSolomon over GF(2^8).
pub type ReedSolomon = crate::ReedSolomon<Field>;

/// Type alias of ShardByShard over GF(2^8).
pub type ShardByShard<'a> = crate::ShardByShard<'a, Field>;

/// An element of `GF(2^16)`.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
struct Element(pub [u8; 2]);

impl Element {
    // Create the zero element.
    fn zero() -> Self {
        Element([0, 0])
    }

    // A constant element evaluating to `n`.
    fn constant(n: u8) -> Element {
        Element([0, n])
    }

    // Whether this is the zero element.
    fn is_zero(&self) -> bool {
        self.0 == [0; 2]
    }

    fn exp(mut self, n: usize) -> Element {
        if n == 0 {
            Element::constant(1)
        } else if self == Element::zero() {
            Element::zero()
        } else {
            let x = self;
            for _ in 1..n {
                self = self * x;
            }

            self
        }
    }

    // reduces from some polynomial with degree <= 2.
    #[inline]
    fn reduce_from(mut x: [u8; 3]) -> Self {
        if x[0] != 0 {
            // divide x by EXT_POLY and use remainder.
            // i = 0 here.
            // c*x^(i+j)  = a*x^i*b*x^j
            x[1] ^= galois_8::mul(EXT_POLY[1], x[0]);
            x[2] ^= galois_8::mul(EXT_POLY[2], x[0]);
        }

        Element([x[1], x[2]])
    }

    fn degree(&self) -> usize {
        if self.0[0] != 0 {
            1
        } else {
            0
        }
    }
}

impl From<[u8; 2]> for Element {
    fn from(c: [u8; 2]) -> Self {
        Element(c)
    }
}

impl Default for Element {
    fn default() -> Self {
        Element::zero()
    }
}

impl Add for Element {
    type Output = Element;

    fn add(self, other: Self) -> Element {
        Element([self.0[0] ^ other.0[0], self.0[1] ^ other.0[1]])
    }
}

impl Sub for Element {
    type Output = Element;

    fn sub(self, other: Self) -> Element {
        self.add(other)
    }
}

impl Mul for Element {
    type Output = Element;

    fn mul(self, rhs: Self) -> Element {
        // FOIL; our elements are linear at most, with two coefficients
        let out: [u8; 3] = [
            galois_8::mul(self.0[0], rhs.0[0]),
            galois_8::add(
                galois_8::mul(self.0[1], rhs.0[0]),
                galois_8::mul(self.0[0], rhs.0[1]),
            ),
            galois_8::mul(self.0[1], rhs.0[1]),
        ];

        Element::reduce_from(out)
    }
}

impl Mul<u8> for Element {
    type Output = Element;

    fn mul(self, rhs: u8) -> Element {
        Element([galois_8::mul(rhs, self.0[0]), galois_8::mul(rhs, self.0[1])])
    }
}

impl Div for Element {
    type Output = Element;

    fn div(self, rhs: Self) -> Element {
        self * rhs.inverse()
    }
}

// helpers for division.

#[derive(Debug)]
enum EgcdRhs {
    Element(Element),
    ExtPoly,
}

impl Element {
    // compute extended euclidean algorithm against an element of self,
    // where the GCD is known to be constant.
    fn const_egcd(self, rhs: EgcdRhs) -> (u8, Element, Element) {
        if self.is_zero() {
            let rhs = match rhs {
                EgcdRhs::Element(elem) => elem,
                EgcdRhs::ExtPoly => panic!("const_egcd invoked with divisible"),
            };
            (rhs.0[1], Element::constant(0), Element::constant(1))
        } else {
            let (cur_quotient, cur_remainder) = match rhs {
                EgcdRhs::Element(rhs) => rhs.polynom_div(self),
                EgcdRhs::ExtPoly => Element::div_ext_by(self),
            };

            // GCD is constant because EXT_POLY is irreducible
            let (g, x, y) = cur_remainder.const_egcd(EgcdRhs::Element(self));
            (g, y + (cur_quotient * x), x)
        }
    }

    // divide EXT_POLY by self.
    fn div_ext_by(rhs: Self) -> (Element, Element) {
        if rhs.degree() == 0 {
            // dividing by constant is the same as multiplying by another constant.
            // and all constant multiples of EXT_POLY are in the equivalence class
            // of 0.
            return (Element::zero(), Element::zero());
        }

        // divisor is ensured linear here.
        // now ensure divisor is monic.
        let leading_mul_inv = galois_8::div(1, rhs.0[0]);

        let monictized = rhs * leading_mul_inv;
        let mut poly = EXT_POLY;

        for i in 0..2 {
            let coef = poly[i];
            for j in 1..2 {
                if rhs.0[j] != 0 {
                    poly[i + j] ^= galois_8::mul(monictized.0[j], coef);
                }
            }
        }

        let remainder = Element::constant(poly[2]);
        let quotient = Element([poly[0], poly[1]]) * leading_mul_inv;

        (quotient, remainder)
    }

    fn polynom_div(self, rhs: Self) -> (Element, Element) {
        let divisor_degree = rhs.degree();
        if rhs.is_zero() {
            panic!("divide by 0");
        } else if self.degree() < divisor_degree {
            // If divisor's degree (len-1) is bigger, all dividend is a remainder
            (Element::zero(), self)
        } else if divisor_degree == 0 {
            // divide by constant.
            let invert = galois_8::div(1, rhs.0[1]);
            let quotient = Element([
                galois_8::mul(invert, self.0[0]),
                galois_8::mul(invert, self.0[1]),
            ]);

            (quotient, Element::zero())
        } else {
            // self degree is at least divisor degree, divisor degree not 0.
            // therefore both are 1.
            debug_assert_eq!(self.degree(), divisor_degree);
            debug_assert_eq!(self.degree(), 1);

            // ensure rhs is constant.
            let leading_mul_inv = galois_8::div(1, rhs.0[0]);
            let monic = Element([
                galois_8::mul(leading_mul_inv, rhs.0[0]),
                galois_8::mul(leading_mul_inv, rhs.0[1]),
            ]);

            let leading_coeff = self.0[0];
            let mut remainder = self.0[1];

            if monic.0[1] != 0 {
                remainder ^= galois_8::mul(monic.0[1], self.0[0]);
            }

            (
                Element::constant(galois_8::mul(leading_mul_inv, leading_coeff)),
                Element::constant(remainder),
            )
        }
    }

    /// Convert the inverse of this field element. Panics if zero.
    fn inverse(self) -> Element {
        if self.is_zero() {
            panic!("Cannot invert 0");
        }

        // first step of extended euclidean algorithm.
        // done here because EXT_POLY is outside the scope of `Element`.
        let (gcd, y) = {
            // self / EXT_POLY = (0, self)
            let remainder = self;

            // GCD is constant because EXT_POLY is irreducible
            let (g, x, _) = remainder.const_egcd(EgcdRhs::ExtPoly);

            (g, x)
        };

        // we still need to normalize it by dividing by the gcd
        if gcd != 0 {
            // EXT_POLY is irreducible so the GCD will always be constant.
            // EXT_POLY*x + self*y = gcd
            // self*y = gcd - EXT_POLY*x
            //
            // EXT_POLY*x is representative of the equivalence class of 0.
            let normalizer = galois_8::div(1, gcd);
            y * normalizer
        } else {
            // self is equivalent to zero.
            panic!("Cannot invert 0");
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use quickcheck::Arbitrary;

    impl Arbitrary for Element {
        fn arbitrary<G: quickcheck::Gen>(gen: &mut G) -> Self {
            let a = u8::arbitrary(gen);
            let b = u8::arbitrary(gen);

            Element([a, b])
        }
    }

    quickcheck! {
        fn qc_add_associativity(a: Element, b: Element, c: Element) -> bool {
            a + (b + c) == (a + b) + c
        }

        fn qc_mul_associativity(a: Element, b: Element, c: Element) -> bool {
            a * (b * c) == (a * b) * c
        }

        fn qc_additive_identity(a: Element) -> bool {
            let zero = Element::zero();
            a - (zero - a) == zero
        }

        fn qc_multiplicative_identity(a: Element) -> bool {
            a.is_zero() || {
                let one = Element([0, 1]);
                (one / a) * a == one
            }
        }

        fn qc_add_commutativity(a: Element, b: Element) -> bool {
            a + b == b + a
        }

        fn qc_mul_commutativity(a: Element, b: Element) -> bool {
            a * b == b * a
        }

        fn qc_add_distributivity(a: Element, b: Element, c: Element) -> bool {
            a * (b + c) == (a * b) + (a * c)
        }

        fn qc_inverse(a: Element) -> bool {
            a.is_zero() || {
                let inv = a.inverse();
                a * inv == Element::constant(1)
            }
        }

        fn qc_exponent_1(a: Element, n: u8) -> bool {
            a.is_zero() || n == 0 || {
                let mut b = a.exp(n as usize);
                for _ in 1..n {
                    b = b / a;
                }

                a == b
            }
        }

        fn qc_exponent_2(a: Element, n: u8) -> bool {
            a.is_zero() || {
                let mut res = true;
                let mut b = Element::constant(1);

                for i in 0..n {
                    res = res && b == a.exp(i as usize);
                    b = b * a;
                }

                res
            }
        }

        fn qc_exp_zero_is_one(a: Element) -> bool {
            a.exp(0) == Element::constant(1)
        }
    }

    #[test]
    #[should_panic]
    fn test_div_b_is_0() {
        let _ = Element([1, 0]) / Element::zero();
    }

    #[test]
    fn zero_to_zero_is_one() {
        assert_eq!(Element::zero().exp(0), Element::constant(1))
    }
}