1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
// Module for cuda-related helper functions and wrappers.
//
// cudaHostRegister/cudaHostUnregister -
//    apis for page-pinning memory. Cuda driver/hardware cannot overlap
//    copies from host memory to GPU memory unless the memory is page-pinned and
//    cannot be paged to disk. The cuda driver provides these interfaces to pin and unpin memory.

use crate::perf_libs;
use crate::recycler::{RecyclerX, Reset};
use rand::seq::SliceRandom;
use rand::Rng;
use rayon::prelude::*;
use std::ops::{Index, IndexMut};
use std::slice::{Iter, IterMut, SliceIndex};
use std::sync::Weak;

use std::os::raw::c_int;

const CUDA_SUCCESS: c_int = 0;

fn pin<T>(_mem: &mut Vec<T>) {
    if let Some(api) = perf_libs::api() {
        use std::ffi::c_void;
        use std::mem::size_of;

        let ptr = _mem.as_mut_ptr();
        let size = _mem.capacity().saturating_mul(size_of::<T>());
        let err = unsafe {
            (api.cuda_host_register)(ptr as *mut c_void, size, /*flags=*/ 0)
        };
        if err != CUDA_SUCCESS {
            panic!(
                "cudaHostRegister error: {} ptr: {:?} bytes: {}",
                err, ptr, size,
            );
        }
    }
}

fn unpin<T>(_mem: *mut T) {
    if let Some(api) = perf_libs::api() {
        use std::ffi::c_void;

        let err = unsafe { (api.cuda_host_unregister)(_mem as *mut c_void) };
        if err != CUDA_SUCCESS {
            panic!("cudaHostUnregister returned: {} ptr: {:?}", err, _mem);
        }
    }
}

// A vector wrapper where the underlying memory can be
// page-pinned. Controlled by flags in case user only wants
// to pin in certain circumstances.
#[derive(Debug, Default)]
pub struct PinnedVec<T: Default + Clone + Sized> {
    x: Vec<T>,
    pinned: bool,
    pinnable: bool,
    recycler: Weak<RecyclerX<PinnedVec<T>>>,
}

impl<T: Default + Clone + Sized> Reset for PinnedVec<T> {
    fn reset(&mut self) {
        self.resize(0, T::default());
    }
    fn warm(&mut self, size_hint: usize) {
        self.set_pinnable();
        self.resize(size_hint, T::default());
    }
    fn set_recycler(&mut self, recycler: Weak<RecyclerX<Self>>) {
        self.recycler = recycler;
    }
}

impl<T: Clone + Default + Sized> From<PinnedVec<T>> for Vec<T> {
    fn from(mut pinned_vec: PinnedVec<T>) -> Self {
        if pinned_vec.pinned {
            // If the vector is pinned and has a recycler, just return a clone
            // so that the next allocation of a PinnedVec will recycle an
            // already pinned one.
            if pinned_vec.recycler.strong_count() != 0 {
                return pinned_vec.x.clone();
            }
            unpin(pinned_vec.x.as_mut_ptr());
            pinned_vec.pinned = false;
        }
        pinned_vec.pinnable = false;
        pinned_vec.recycler = Weak::default();
        std::mem::take(&mut pinned_vec.x)
    }
}

impl<'a, T: Clone + Default + Sized> IntoIterator for &'a PinnedVec<T> {
    type Item = &'a T;
    type IntoIter = Iter<'a, T>;

    fn into_iter(self) -> Self::IntoIter {
        self.x.iter()
    }
}

impl<T: Clone + Default + Sized, I: SliceIndex<[T]>> Index<I> for PinnedVec<T> {
    type Output = I::Output;

    #[inline]
    fn index(&self, index: I) -> &Self::Output {
        &self.x[index]
    }
}

impl<T: Clone + Default + Sized, I: SliceIndex<[T]>> IndexMut<I> for PinnedVec<T> {
    #[inline]
    fn index_mut(&mut self, index: I) -> &mut Self::Output {
        &mut self.x[index]
    }
}

impl<T: Clone + Default + Sized> PinnedVec<T> {
    pub fn iter(&self) -> Iter<'_, T> {
        self.x.iter()
    }

    pub fn iter_mut(&mut self) -> IterMut<'_, T> {
        self.x.iter_mut()
    }

    pub fn capacity(&self) -> usize {
        self.x.capacity()
    }
}

impl<'a, T: Clone + Send + Sync + Default + Sized> IntoParallelIterator for &'a PinnedVec<T> {
    type Iter = rayon::slice::Iter<'a, T>;
    type Item = &'a T;
    fn into_par_iter(self) -> Self::Iter {
        self.x.par_iter()
    }
}

impl<'a, T: Clone + Send + Sync + Default + Sized> IntoParallelIterator for &'a mut PinnedVec<T> {
    type Iter = rayon::slice::IterMut<'a, T>;
    type Item = &'a mut T;
    fn into_par_iter(self) -> Self::Iter {
        self.x.par_iter_mut()
    }
}

impl<T: Clone + Default + Sized> PinnedVec<T> {
    pub fn reserve(&mut self, size: usize) {
        self.x.reserve(size);
    }

    pub fn reserve_and_pin(&mut self, size: usize) {
        if self.x.capacity() < size {
            if self.pinned {
                unpin(self.x.as_mut_ptr());
                self.pinned = false;
            }
            self.x.reserve(size);
        }
        self.set_pinnable();
        if !self.pinned {
            pin(&mut self.x);
            self.pinned = true;
        }
    }

    pub fn set_pinnable(&mut self) {
        self.pinnable = true;
    }

    pub fn copy_from_slice(&mut self, data: &[T])
    where
        T: Copy,
    {
        self.x.copy_from_slice(data);
    }

    pub fn from_vec(source: Vec<T>) -> Self {
        Self {
            x: source,
            pinned: false,
            pinnable: false,
            recycler: Weak::default(),
        }
    }

    pub fn with_capacity(capacity: usize) -> Self {
        Self::from_vec(Vec::with_capacity(capacity))
    }

    pub fn is_empty(&self) -> bool {
        self.x.is_empty()
    }

    pub fn len(&self) -> usize {
        self.x.len()
    }

    pub fn as_ptr(&self) -> *const T {
        self.x.as_ptr()
    }

    pub fn as_mut_ptr(&mut self) -> *mut T {
        self.x.as_mut_ptr()
    }

    fn prepare_realloc(&mut self, new_size: usize) -> (*mut T, usize) {
        let old_ptr = self.x.as_mut_ptr();
        let old_capacity = self.x.capacity();
        // Predict realloc and unpin.
        if self.pinned && self.x.capacity() < new_size {
            unpin(old_ptr);
            self.pinned = false;
        }
        (old_ptr, old_capacity)
    }

    pub fn push(&mut self, x: T) {
        let (old_ptr, old_capacity) = self.prepare_realloc(self.x.len().saturating_add(1));
        self.x.push(x);
        self.check_ptr(old_ptr, old_capacity, "push");
    }

    pub fn truncate(&mut self, size: usize) {
        self.x.truncate(size);
    }

    pub fn resize(&mut self, size: usize, elem: T) {
        let (old_ptr, old_capacity) = self.prepare_realloc(size);
        self.x.resize(size, elem);
        self.check_ptr(old_ptr, old_capacity, "resize");
    }

    pub fn append(&mut self, other: &mut Vec<T>) {
        let (old_ptr, old_capacity) =
            self.prepare_realloc(self.x.len().saturating_add(other.len()));
        self.x.append(other);
        self.check_ptr(old_ptr, old_capacity, "resize");
    }

    pub fn append_pinned(&mut self, other: &mut Self) {
        let (old_ptr, old_capacity) =
            self.prepare_realloc(self.x.len().saturating_add(other.len()));
        self.x.append(&mut other.x);
        self.check_ptr(old_ptr, old_capacity, "resize");
    }

    pub fn shuffle<R: Rng>(&mut self, rng: &mut R) {
        self.x.shuffle(rng)
    }

    fn check_ptr(&mut self, _old_ptr: *mut T, _old_capacity: usize, _from: &'static str) {
        let api = perf_libs::api();
        if api.is_some()
            && self.pinnable
            && (self.x.as_ptr() != _old_ptr || self.x.capacity() != _old_capacity)
        {
            if self.pinned {
                unpin(_old_ptr);
            }

            trace!(
                "pinning from check_ptr old: {} size: {} from: {}",
                _old_capacity,
                self.x.capacity(),
                _from
            );
            pin(&mut self.x);
            self.pinned = true;
        }
    }
}

impl<T: Clone + Default + Sized> Clone for PinnedVec<T> {
    fn clone(&self) -> Self {
        let mut x = self.x.clone();
        let pinned = if self.pinned {
            pin(&mut x);
            true
        } else {
            false
        };
        debug!(
            "clone PinnedVec: size: {} pinned?: {} pinnable?: {}",
            self.x.capacity(),
            self.pinned,
            self.pinnable
        );
        Self {
            x,
            pinned,
            pinnable: self.pinnable,
            recycler: self.recycler.clone(),
        }
    }
}

impl<T: Sized + Default + Clone> Drop for PinnedVec<T> {
    fn drop(&mut self) {
        if let Some(recycler) = self.recycler.upgrade() {
            recycler.recycle(std::mem::take(self));
        } else if self.pinned {
            unpin(self.x.as_mut_ptr());
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_pinned_vec() {
        let mut mem = PinnedVec::with_capacity(10);
        mem.set_pinnable();
        mem.push(50);
        mem.resize(2, 10);
        assert_eq!(mem[0], 50);
        assert_eq!(mem[1], 10);
        assert_eq!(mem.len(), 2);
        assert!(!mem.is_empty());
        let mut iter = mem.iter();
        assert_eq!(*iter.next().unwrap(), 50);
        assert_eq!(*iter.next().unwrap(), 10);
        assert_eq!(iter.next(), None);
    }
}