1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
//! The `netutil` module assists with networking
use log::*;
use rand::{thread_rng, Rng};
use socket2::{Domain, SockAddr, Socket, Type};
use std::io;
use std::io::Read;
use std::net::{IpAddr, Ipv4Addr, SocketAddr, TcpListener, TcpStream, ToSocketAddrs, UdpSocket};
use std::time::Duration;

mod ip_echo_server;
pub use ip_echo_server::*;

/// A data type representing a public Udp socket
pub struct UdpSocketPair {
    pub addr: SocketAddr,    // Public address of the socket
    pub receiver: UdpSocket, // Locally bound socket that can receive from the public address
    pub sender: UdpSocket,   // Locally bound socket to send via public address
}

pub type PortRange = (u16, u16);

/// Determine the public IP address of this machine by asking an ip_echo_server at the given
/// address
pub fn get_public_ip_addr(ip_echo_server_addr: &SocketAddr) -> Result<IpAddr, String> {
    let mut data = Vec::new();

    let timeout = Duration::new(5, 0);
    TcpStream::connect_timeout(ip_echo_server_addr, timeout)
        .and_then(|mut stream| {
            stream
                .set_read_timeout(Some(Duration::new(10, 0)))
                .expect("set_read_timeout");
            stream.read_to_end(&mut data)
        })
        .and_then(|_| {
            bincode::deserialize(&data).map_err(|err| {
                io::Error::new(
                    io::ErrorKind::Other,
                    format!("Failed to deserialize: {:?}", err),
                )
            })
        })
        .map_err(|err| err.to_string())
}

pub fn parse_port_or_addr(optstr: Option<&str>, default_addr: SocketAddr) -> SocketAddr {
    if let Some(addrstr) = optstr {
        if let Ok(port) = addrstr.parse() {
            let mut addr = default_addr;
            addr.set_port(port);
            addr
        } else if let Ok(addr) = addrstr.parse() {
            addr
        } else {
            default_addr
        }
    } else {
        default_addr
    }
}

pub fn parse_port_range(port_range: &str) -> Option<PortRange> {
    let ports: Vec<&str> = port_range.split('-').collect();
    if ports.len() != 2 {
        return None;
    }

    let start_port = ports[0].parse();
    let end_port = ports[1].parse();

    if start_port.is_err() || end_port.is_err() {
        return None;
    }
    let start_port = start_port.unwrap();
    let end_port = end_port.unwrap();
    if end_port < start_port {
        return None;
    }
    Some((start_port, end_port))
}

pub fn parse_host(host: &str) -> Result<IpAddr, String> {
    let ips: Vec<_> = (host, 0)
        .to_socket_addrs()
        .map_err(|err| err.to_string())?
        .map(|socket_address| socket_address.ip())
        .collect();
    if ips.is_empty() {
        Err(format!("Unable to resolve host: {}", host))
    } else {
        Ok(ips[0])
    }
}

pub fn parse_host_port(host_port: &str) -> Result<SocketAddr, String> {
    let addrs: Vec<_> = host_port
        .to_socket_addrs()
        .map_err(|err| err.to_string())?
        .collect();
    if addrs.is_empty() {
        Err(format!("Unable to resolve host: {}", host_port))
    } else {
        Ok(addrs[0])
    }
}

#[cfg(windows)]
fn udp_socket(_reuseaddr: bool) -> io::Result<Socket> {
    let sock = Socket::new(Domain::ipv4(), Type::dgram(), None)?;
    Ok(sock)
}

#[cfg(not(windows))]
fn udp_socket(reuseaddr: bool) -> io::Result<Socket> {
    use nix::sys::socket::setsockopt;
    use nix::sys::socket::sockopt::{ReuseAddr, ReusePort};
    use std::os::unix::io::AsRawFd;

    let sock = Socket::new(Domain::ipv4(), Type::dgram(), None)?;
    let sock_fd = sock.as_raw_fd();

    if reuseaddr {
        // best effort, i.e. ignore errors here, we'll get the failure in caller
        setsockopt(sock_fd, ReusePort, &true).ok();
        setsockopt(sock_fd, ReuseAddr, &true).ok();
    }

    Ok(sock)
}

pub fn bind_in_range(range: PortRange) -> io::Result<(u16, UdpSocket)> {
    let sock = udp_socket(false)?;

    let (start, end) = range;
    let mut tries_left = end - start;
    let mut rand_port = thread_rng().gen_range(start, end);
    loop {
        let addr = SocketAddr::new(IpAddr::V4(Ipv4Addr::new(0, 0, 0, 0)), rand_port);

        match sock.bind(&SockAddr::from(addr)) {
            Ok(_) => {
                let sock = sock.into_udp_socket();
                break Result::Ok((sock.local_addr().unwrap().port(), sock));
            }
            Err(err) => {
                if tries_left == 0 {
                    return Err(err);
                }
            }
        }
        rand_port += 1;
        if rand_port == end {
            rand_port = start;
        }
        tries_left -= 1;
    }
}

// binds many sockets to the same port in a range
pub fn multi_bind_in_range(range: PortRange, mut num: usize) -> io::Result<(u16, Vec<UdpSocket>)> {
    if cfg!(windows) && num != 1 {
        // TODO: Can we do better for windows?
        warn!(
            "multi_bind_in_range() only supports 1 socket in windows ({} requested)",
            num
        );
        num = 1;
    }
    let mut sockets = Vec::with_capacity(num);

    let port = {
        let (port, _) = bind_in_range(range)?;
        port
    }; // drop the probe, port should be available... briefly.

    for _ in 0..num {
        sockets.push(bind_to(port, true)?);
    }
    Ok((port, sockets))
}

pub fn bind_to(port: u16, reuseaddr: bool) -> io::Result<UdpSocket> {
    let sock = udp_socket(reuseaddr)?;

    let addr = SocketAddr::new(IpAddr::V4(Ipv4Addr::new(0, 0, 0, 0)), port);

    match sock.bind(&SockAddr::from(addr)) {
        Ok(_) => Result::Ok(sock.into_udp_socket()),
        Err(err) => Err(err),
    }
}

pub fn find_available_port_in_range(range: PortRange) -> io::Result<u16> {
    let (start, end) = range;
    let mut tries_left = end - start;
    let mut rand_port = thread_rng().gen_range(start, end);
    loop {
        match TcpListener::bind(SocketAddr::new(
            IpAddr::V4(Ipv4Addr::new(0, 0, 0, 0)),
            rand_port,
        )) {
            Ok(_) => {
                break Ok(rand_port);
            }
            Err(err) => {
                if tries_left == 0 {
                    return Err(err);
                }
            }
        }
        rand_port += 1;
        if rand_port == end {
            rand_port = start;
        }
        tries_left -= 1;
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_parse_port_or_addr() {
        let p1 = parse_port_or_addr(Some("9000"), SocketAddr::from(([1, 2, 3, 4], 1)));
        assert_eq!(p1.port(), 9000);
        let p2 = parse_port_or_addr(Some("127.0.0.1:7000"), SocketAddr::from(([1, 2, 3, 4], 1)));
        assert_eq!(p2.port(), 7000);
        let p2 = parse_port_or_addr(Some("hi there"), SocketAddr::from(([1, 2, 3, 4], 1)));
        assert_eq!(p2.port(), 1);
        let p3 = parse_port_or_addr(None, SocketAddr::from(([1, 2, 3, 4], 1)));
        assert_eq!(p3.port(), 1);
    }

    #[test]
    fn test_parse_port_range() {
        assert_eq!(parse_port_range("garbage"), None);
        assert_eq!(parse_port_range("1-"), None);
        assert_eq!(parse_port_range("1-2"), Some((1, 2)));
        assert_eq!(parse_port_range("1-2-3"), None);
        assert_eq!(parse_port_range("2-1"), None);
    }

    #[test]
    fn test_parse_host() {
        parse_host("localhost:1234").unwrap_err();
        parse_host("localhost").unwrap();
        parse_host("127.0.0.0:1234").unwrap_err();
        parse_host("127.0.0.0").unwrap();
    }

    #[test]
    fn test_parse_host_port() {
        parse_host_port("localhost:1234").unwrap();
        parse_host_port("localhost").unwrap_err();
        parse_host_port("127.0.0.0:1234").unwrap();
        parse_host_port("127.0.0.0").unwrap_err();
    }

    #[test]
    fn test_bind() {
        assert_eq!(bind_in_range((2000, 2001)).unwrap().0, 2000);
        let x = bind_to(2002, true).unwrap();
        let y = bind_to(2002, true).unwrap();
        assert_eq!(
            x.local_addr().unwrap().port(),
            y.local_addr().unwrap().port()
        );
        let (port, v) = multi_bind_in_range((2010, 2110), 10).unwrap();
        for sock in &v {
            assert_eq!(port, sock.local_addr().unwrap().port());
        }
    }

    #[test]
    #[should_panic]
    fn test_bind_in_range_nil() {
        let _ = bind_in_range((2000, 2000));
    }

    #[test]
    fn test_find_available_port_in_range() {
        assert_eq!(find_available_port_in_range((3000, 3001)).unwrap(), 3000);
        let port = find_available_port_in_range((3000, 3050)).unwrap();
        assert!(3000 <= port && port < 3050);
    }
}