1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
use crate::{
    pubsub_client::{PubsubClient, PubsubClientError, PubsubClientSubscription},
    rpc_client::RpcClient,
    rpc_response::SlotUpdate,
};
use bincode::serialize;
use log::*;
use solana_sdk::{clock::Slot, pubkey::Pubkey, transaction::Transaction};
use std::{
    collections::{HashMap, HashSet, VecDeque},
    net::{SocketAddr, UdpSocket},
    str::FromStr,
    sync::{
        atomic::{AtomicBool, Ordering},
        Arc, RwLock,
    },
    thread::JoinHandle,
    time::{Duration, Instant},
};
use thiserror::Error;

#[derive(Error, Debug)]
pub enum TpuSenderError {
    #[error("Pubsub error: {0:?}")]
    PubsubError(#[from] PubsubClientError),
    #[error("RPC error: {0:?}")]
    RpcError(#[from] crate::client_error::ClientError),
    #[error("IO error: {0:?}")]
    IoError(#[from] std::io::Error),
}

type Result<T> = std::result::Result<T, TpuSenderError>;

/// Default number of slots used to build TPU socket fanout set
pub const DEFAULT_FANOUT_SLOTS: u64 = 12;

/// Maximum number of slots used to build TPU socket fanout set
pub const MAX_FANOUT_SLOTS: u64 = 100;

/// Config params for `TpuClient`
#[derive(Clone, Debug)]
pub struct TpuClientConfig {
    /// The range of upcoming slots to include when determining which
    /// leaders to send transactions to (min: 1, max: 100)
    pub fanout_slots: u64,
}

impl Default for TpuClientConfig {
    fn default() -> Self {
        Self {
            fanout_slots: DEFAULT_FANOUT_SLOTS,
        }
    }
}

/// Client which sends transactions directly to the current leader's TPU port over UDP.
/// The client uses RPC to determine the current leader and fetch node contact info
pub struct TpuClient {
    send_socket: UdpSocket,
    fanout_slots: u64,
    leader_tpu_service: LeaderTpuService,
    exit: Arc<AtomicBool>,
}

impl TpuClient {
    /// Serializes and sends a transaction to the current leader's TPU port
    pub fn send_transaction(&self, transaction: &Transaction) -> bool {
        let wire_transaction = serialize(transaction).expect("serialization should succeed");
        self.send_wire_transaction(&wire_transaction)
    }

    /// Sends a transaction to the current leader's TPU port
    pub fn send_wire_transaction(&self, wire_transaction: &[u8]) -> bool {
        let mut sent = false;
        for tpu_address in self
            .leader_tpu_service
            .leader_tpu_sockets(self.fanout_slots)
        {
            if self
                .send_socket
                .send_to(wire_transaction, tpu_address)
                .is_ok()
            {
                sent = true;
            }
        }
        sent
    }

    /// Create a new client that disconnects when dropped
    pub fn new(
        rpc_client: Arc<RpcClient>,
        websocket_url: &str,
        config: TpuClientConfig,
    ) -> Result<Self> {
        let exit = Arc::new(AtomicBool::new(false));
        let leader_tpu_service = LeaderTpuService::new(rpc_client, websocket_url, exit.clone())?;

        Ok(Self {
            send_socket: UdpSocket::bind("0.0.0.0:0").unwrap(),
            fanout_slots: config.fanout_slots.min(MAX_FANOUT_SLOTS).max(1),
            leader_tpu_service,
            exit,
        })
    }
}

impl Drop for TpuClient {
    fn drop(&mut self) {
        self.exit.store(true, Ordering::Relaxed);
        self.leader_tpu_service.join();
    }
}

struct LeaderTpuCache {
    first_slot: Slot,
    leaders: Vec<Pubkey>,
    leader_tpu_map: HashMap<Pubkey, SocketAddr>,
}

impl LeaderTpuCache {
    fn new(rpc_client: &RpcClient, first_slot: Slot) -> Self {
        let leaders = Self::fetch_slot_leaders(rpc_client, first_slot).unwrap_or_default();
        let leader_tpu_map = Self::fetch_cluster_tpu_sockets(&rpc_client).unwrap_or_default();
        Self {
            first_slot,
            leaders,
            leader_tpu_map,
        }
    }

    // Last slot that has a cached leader pubkey
    fn last_slot(&self) -> Slot {
        self.first_slot + self.leaders.len().saturating_sub(1) as u64
    }

    // Get the TPU sockets for the current leader and upcoming leaders according to fanout size
    fn get_leader_sockets(&self, current_slot: Slot, fanout_slots: u64) -> Vec<SocketAddr> {
        let mut leader_set = HashSet::new();
        let mut leader_sockets = Vec::new();
        for leader_slot in current_slot..current_slot + fanout_slots {
            if let Some(leader) = self.get_slot_leader(leader_slot) {
                if let Some(tpu_socket) = self.leader_tpu_map.get(leader) {
                    if leader_set.insert(*leader) {
                        leader_sockets.push(*tpu_socket);
                    }
                }
            }
        }
        leader_sockets
    }

    fn get_slot_leader(&self, slot: Slot) -> Option<&Pubkey> {
        if slot >= self.first_slot {
            let index = slot - self.first_slot;
            self.leaders.get(index as usize)
        } else {
            None
        }
    }

    fn fetch_cluster_tpu_sockets(rpc_client: &RpcClient) -> Result<HashMap<Pubkey, SocketAddr>> {
        let cluster_contact_info = rpc_client.get_cluster_nodes()?;
        Ok(cluster_contact_info
            .into_iter()
            .filter_map(|contact_info| {
                Some((
                    Pubkey::from_str(&contact_info.pubkey).ok()?,
                    contact_info.tpu?,
                ))
            })
            .collect())
    }

    fn fetch_slot_leaders(rpc_client: &RpcClient, start_slot: Slot) -> Result<Vec<Pubkey>> {
        Ok(rpc_client.get_slot_leaders(start_slot, 2 * MAX_FANOUT_SLOTS)?)
    }
}

// 48 chosen because it's unlikely that 12 leaders in a row will miss their slots
const MAX_SLOT_SKIP_DISTANCE: u64 = 48;

#[derive(Clone, Debug)]
struct RecentLeaderSlots(Arc<RwLock<VecDeque<Slot>>>);
impl RecentLeaderSlots {
    fn new(current_slot: Slot) -> Self {
        let mut recent_slots = VecDeque::new();
        recent_slots.push_back(current_slot);
        Self(Arc::new(RwLock::new(recent_slots)))
    }

    fn record_slot(&self, current_slot: Slot) {
        let mut recent_slots = self.0.write().unwrap();
        recent_slots.push_back(current_slot);
        // 12 recent slots should be large enough to avoid a misbehaving
        // validator from affecting the median recent slot
        while recent_slots.len() > 12 {
            recent_slots.pop_front();
        }
    }

    // Estimate the current slot from recent slot notifications.
    fn estimated_current_slot(&self) -> Slot {
        let mut recent_slots: Vec<Slot> = self.0.read().unwrap().iter().cloned().collect();
        assert!(!recent_slots.is_empty());
        recent_slots.sort_unstable();

        // Validators can broadcast invalid blocks that are far in the future
        // so check if the current slot is in line with the recent progression.
        let max_index = recent_slots.len() - 1;
        let median_index = max_index / 2;
        let median_recent_slot = recent_slots[median_index];
        let expected_current_slot = median_recent_slot + (max_index - median_index) as u64;
        let max_reasonable_current_slot = expected_current_slot + MAX_SLOT_SKIP_DISTANCE;

        // Return the highest slot that doesn't exceed what we believe is a
        // reasonable slot.
        recent_slots
            .into_iter()
            .rev()
            .find(|slot| *slot <= max_reasonable_current_slot)
            .unwrap()
    }
}

#[cfg(test)]
impl From<Vec<Slot>> for RecentLeaderSlots {
    fn from(recent_slots: Vec<Slot>) -> Self {
        assert!(!recent_slots.is_empty());
        Self(Arc::new(RwLock::new(recent_slots.into_iter().collect())))
    }
}

/// Service that tracks upcoming leaders and maintains an up-to-date mapping
/// of leader id to TPU socket address.
struct LeaderTpuService {
    recent_slots: RecentLeaderSlots,
    leader_tpu_cache: Arc<RwLock<LeaderTpuCache>>,
    subscription: Option<PubsubClientSubscription<SlotUpdate>>,
    t_leader_tpu_service: Option<JoinHandle<()>>,
}

impl LeaderTpuService {
    fn new(rpc_client: Arc<RpcClient>, websocket_url: &str, exit: Arc<AtomicBool>) -> Result<Self> {
        let start_slot = rpc_client.get_max_shred_insert_slot()?;

        let recent_slots = RecentLeaderSlots::new(start_slot);
        let leader_tpu_cache = Arc::new(RwLock::new(LeaderTpuCache::new(&rpc_client, start_slot)));

        let subscription = if !websocket_url.is_empty() {
            let recent_slots = recent_slots.clone();
            Some(PubsubClient::slot_updates_subscribe(
                websocket_url,
                move |update| {
                    let current_slot = match update {
                        // This update indicates that a full slot was received by the connected
                        // node so we can stop sending transactions to the leader for that slot
                        SlotUpdate::Completed { slot, .. } => slot.saturating_add(1),
                        // This update indicates that we have just received the first shred from
                        // the leader for this slot and they are probably still accepting transactions.
                        SlotUpdate::FirstShredReceived { slot, .. } => slot,
                        _ => return,
                    };

                    recent_slots.record_slot(current_slot);
                },
            )?)
        } else {
            None
        };

        let t_leader_tpu_service = Some({
            let recent_slots = recent_slots.clone();
            let leader_tpu_cache = leader_tpu_cache.clone();
            std::thread::Builder::new()
                .name("ldr-tpu-srv".to_string())
                .spawn(move || Self::run(rpc_client, recent_slots, leader_tpu_cache, exit))
                .unwrap()
        });

        Ok(LeaderTpuService {
            recent_slots,
            leader_tpu_cache,
            subscription,
            t_leader_tpu_service,
        })
    }

    fn join(&mut self) {
        if let Some(mut subscription) = self.subscription.take() {
            let _ = subscription.send_unsubscribe();
            let _ = subscription.shutdown();
        }
        if let Some(t_handle) = self.t_leader_tpu_service.take() {
            t_handle.join().unwrap();
        }
    }

    fn leader_tpu_sockets(&self, fanout_slots: u64) -> Vec<SocketAddr> {
        let current_slot = self.recent_slots.estimated_current_slot();
        self.leader_tpu_cache
            .read()
            .unwrap()
            .get_leader_sockets(current_slot, fanout_slots)
    }

    fn run(
        rpc_client: Arc<RpcClient>,
        recent_slots: RecentLeaderSlots,
        leader_tpu_cache: Arc<RwLock<LeaderTpuCache>>,
        exit: Arc<AtomicBool>,
    ) {
        let mut last_cluster_refresh = Instant::now();
        let mut sleep_ms = 1000;
        loop {
            if exit.load(Ordering::Relaxed) {
                break;
            }

            // Refresh cluster TPU ports every 5min in case validators restart with new port configuration
            // or new validators come online
            if last_cluster_refresh.elapsed() > Duration::from_secs(5 * 60) {
                if let Ok(leader_tpu_map) = LeaderTpuCache::fetch_cluster_tpu_sockets(&rpc_client) {
                    leader_tpu_cache.write().unwrap().leader_tpu_map = leader_tpu_map;
                    last_cluster_refresh = Instant::now();
                } else {
                    sleep_ms = 100;
                    continue;
                }
            }

            // Sleep a few slots before checking if leader cache needs to be refreshed again
            std::thread::sleep(Duration::from_millis(sleep_ms));

            let current_slot = recent_slots.estimated_current_slot();
            if current_slot
                >= leader_tpu_cache
                    .read()
                    .unwrap()
                    .last_slot()
                    .saturating_sub(MAX_FANOUT_SLOTS)
            {
                if let Ok(slot_leaders) =
                    LeaderTpuCache::fetch_slot_leaders(&rpc_client, current_slot)
                {
                    let mut leader_tpu_cache = leader_tpu_cache.write().unwrap();
                    leader_tpu_cache.first_slot = current_slot;
                    leader_tpu_cache.leaders = slot_leaders;
                } else {
                    sleep_ms = 100;
                    continue;
                }
            }

            sleep_ms = 1000;
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    fn assert_slot(recent_slots: RecentLeaderSlots, expected_slot: Slot) {
        assert_eq!(recent_slots.estimated_current_slot(), expected_slot);
    }

    #[test]
    fn test_recent_leader_slots() {
        assert_slot(RecentLeaderSlots::new(0), 0);

        let mut recent_slots: Vec<Slot> = (1..=12).collect();
        assert_slot(RecentLeaderSlots::from(recent_slots.clone()), 12);

        recent_slots.reverse();
        assert_slot(RecentLeaderSlots::from(recent_slots), 12);

        assert_slot(
            RecentLeaderSlots::from(vec![0, 1 + MAX_SLOT_SKIP_DISTANCE]),
            1 + MAX_SLOT_SKIP_DISTANCE,
        );
        assert_slot(
            RecentLeaderSlots::from(vec![0, 2 + MAX_SLOT_SKIP_DISTANCE]),
            0,
        );

        assert_slot(RecentLeaderSlots::from(vec![1]), 1);
        assert_slot(RecentLeaderSlots::from(vec![1, 100]), 1);
        assert_slot(RecentLeaderSlots::from(vec![1, 2, 100]), 2);
        assert_slot(RecentLeaderSlots::from(vec![1, 2, 3, 100]), 3);
        assert_slot(RecentLeaderSlots::from(vec![1, 2, 3, 99, 100]), 3);
    }
}