1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
pub mod alloc;
pub mod allocator_bump;
pub mod allocator_system;
pub mod bpf_verifier;
pub mod helpers;

#[macro_export]
macro_rules! solana_bpf_loader {
    () => {
        (
            "solana_bpf_loader".to_string(),
            solana_sdk::bpf_loader::id(),
        )
    };
}

use alloc::Alloc;
use byteorder::{ByteOrder, LittleEndian, WriteBytesExt};
use log::*;
use solana_rbpf::{EbpfVmRaw, MemoryRegion};
use solana_sdk::account::KeyedAccount;
use solana_sdk::instruction::InstructionError;
use solana_sdk::loader_instruction::LoaderInstruction;
use solana_sdk::pubkey::Pubkey;
use std::io::prelude::*;
use std::io::Error;
use std::mem;

pub fn create_vm(prog: &[u8]) -> Result<(EbpfVmRaw, MemoryRegion), Error> {
    let mut vm = EbpfVmRaw::new(None)?;
    vm.set_verifier(bpf_verifier::check)?;
    vm.set_max_instruction_count(36000)?;
    vm.set_elf(&prog)?;

    let heap_region = helpers::register_helpers(&mut vm)?;

    Ok((vm, heap_region))
}

fn serialize_parameters(
    program_id: &Pubkey,
    keyed_accounts: &mut [KeyedAccount],
    data: &[u8],
) -> Vec<u8> {
    assert_eq!(32, mem::size_of::<Pubkey>());

    let mut v: Vec<u8> = Vec::new();
    v.write_u64::<LittleEndian>(keyed_accounts.len() as u64)
        .unwrap();
    for info in keyed_accounts.iter_mut() {
        v.write_u64::<LittleEndian>(info.signer_key().is_some() as u64)
            .unwrap();
        v.write_all(info.unsigned_key().as_ref()).unwrap();
        v.write_u64::<LittleEndian>(info.account.lamports).unwrap();
        v.write_u64::<LittleEndian>(info.account.data.len() as u64)
            .unwrap();
        v.write_all(&info.account.data).unwrap();
        v.write_all(info.account.owner.as_ref()).unwrap();
    }
    v.write_u64::<LittleEndian>(data.len() as u64).unwrap();
    v.write_all(data).unwrap();
    v.write_all(program_id.as_ref()).unwrap();
    v
}

fn deserialize_parameters(keyed_accounts: &mut [KeyedAccount], buffer: &[u8]) {
    assert_eq!(32, mem::size_of::<Pubkey>());

    let mut start = mem::size_of::<u64>();
    for info in keyed_accounts.iter_mut() {
        start += mem::size_of::<u64>(); // skip signer_key boolean
        start += mem::size_of::<Pubkey>(); // skip pubkey
        info.account.lamports = LittleEndian::read_u64(&buffer[start..]);

        start += mem::size_of::<u64>() // skip lamports
                  + mem::size_of::<u64>(); // skip length tag
        let end = start + info.account.data.len();
        info.account.data.clone_from_slice(&buffer[start..end]);

        start += info.account.data.len() // skip data
                  + mem::size_of::<Pubkey>(); // skip owner
    }
}

pub fn process_instruction(
    program_id: &Pubkey,
    keyed_accounts: &mut [KeyedAccount],
    ix_data: &[u8],
) -> Result<(), InstructionError> {
    solana_logger::setup();

    if let Ok(instruction) = bincode::deserialize(ix_data) {
        match instruction {
            LoaderInstruction::Write { offset, bytes } => {
                if keyed_accounts[0].signer_key().is_none() {
                    warn!("key[0] did not sign the transaction");
                    return Err(InstructionError::GenericError);
                }
                let offset = offset as usize;
                let len = bytes.len();
                debug!("Write: offset={} length={}", offset, len);
                if keyed_accounts[0].account.data.len() < offset + len {
                    warn!(
                        "Write overflow: {} < {}",
                        keyed_accounts[0].account.data.len(),
                        offset + len
                    );
                    return Err(InstructionError::GenericError);
                }
                keyed_accounts[0].account.data[offset..offset + len].copy_from_slice(&bytes);
            }
            LoaderInstruction::Finalize => {
                if keyed_accounts[0].signer_key().is_none() {
                    warn!("key[0] did not sign the transaction");
                    return Err(InstructionError::GenericError);
                }
                keyed_accounts[0].account.executable = true;
                info!(
                    "Finalize: account {:?}",
                    keyed_accounts[0].signer_key().unwrap()
                );
            }
            LoaderInstruction::InvokeMain { data } => {
                if !keyed_accounts[0].account.executable {
                    warn!("BPF account not executable");
                    return Err(InstructionError::GenericError);
                }
                let (progs, params) = keyed_accounts.split_at_mut(1);
                let prog = &progs[0].account.data;
                info!("Call BPF program");
                let (mut vm, heap_region) = match create_vm(prog) {
                    Ok(info) => info,
                    Err(e) => {
                        warn!("Failed to create BPF VM: {}", e);
                        return Err(InstructionError::GenericError);
                    }
                };
                let mut v = serialize_parameters(program_id, params, &data);

                match vm.execute_program(v.as_mut_slice(), &[], &[heap_region]) {
                    Ok(status) => {
                        if 0 == status {
                            warn!("BPF program failed: {}", status);
                            return Err(InstructionError::GenericError);
                        }
                    }
                    Err(e) => {
                        warn!("BPF VM failed to run program: {}", e);
                        return Err(InstructionError::GenericError);
                    }
                }
                deserialize_parameters(params, &v);
                info!(
                    "BPF program executed {} instructions",
                    vm.get_last_instruction_count()
                );
            }
        }
    } else {
        warn!("Invalid instruction data: {:?}", ix_data);
        return Err(InstructionError::GenericError);
    }
    Ok(())
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    #[should_panic(expected = "Error: Execution exceeded maximum number of instructions")]
    fn test_non_terminating_program() {
        #[rustfmt::skip]
        let prog = &[
            0x07, 0x01, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, // r6 + 1
            0x05, 0x00, 0xfe, 0xff, 0x00, 0x00, 0x00, 0x00, // goto -2
            0x95, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // exit
        ];
        let input = &mut [0x00];

        let mut vm = EbpfVmRaw::new(None).unwrap();
        vm.set_verifier(bpf_verifier::check).unwrap();
        vm.set_max_instruction_count(10).unwrap();
        vm.set_program(prog).unwrap();
        vm.execute_program(input, &[], &[]).unwrap();
    }
}