1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
// Copyright (C) 2019-2021 Aleo Systems Inc.
// This file is part of the snarkVM library.

// The snarkVM library is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// The snarkVM library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with the snarkVM library. If not, see <https://www.gnu.org/licenses/>.

use crate::{fiat_shamir::FiatShamirRng, FiatShamirError, PhantomData};
use snarkvm_fields::{PrimeField, ToConstraintField};
use snarkvm_gadgets::nonnative::params::OptimizationType;

use core::num::NonZeroU32;
use digest::Digest;
use rand_chacha::ChaChaRng;
use rand_core::{Error, RngCore, SeedableRng};

/// Implements a Fiat-Shamir based Rng that allows one to incrementally update
/// the seed based on new messages in the proof transcript.
/// Use a ChaCha stream cipher to generate the actual pseudorandom bits.
/// Use a digest function to do absorbing.
pub struct FiatShamirChaChaRng<TargetField: PrimeField, BaseField: PrimeField, D: Digest> {
    /// The ChaCha RNG.
    r: Option<ChaChaRng>,
    /// The initial seed for the RNG.
    seed: Option<Vec<u8>>,
    #[doc(hidden)]
    _target_field: PhantomData<TargetField>,
    #[doc(hidden)]
    _base_field: PhantomData<BaseField>,
    #[doc(hidden)]
    _digest: PhantomData<D>,
}

impl<TargetField: PrimeField, BaseField: PrimeField, D: Digest> RngCore
    for FiatShamirChaChaRng<TargetField, BaseField, D>
{
    #[inline]
    fn next_u32(&mut self) -> u32 {
        (&mut self.r)
            .as_mut()
            .map(|r| r.next_u32())
            .expect("Rng was invoked in a non-hiding context")
    }

    #[inline]
    fn next_u64(&mut self) -> u64 {
        (&mut self.r)
            .as_mut()
            .map(|r| r.next_u64())
            .expect("Rng was invoked in a non-hiding context")
    }

    #[inline]
    fn fill_bytes(&mut self, dest: &mut [u8]) {
        (&mut self.r)
            .as_mut()
            .map(|r| r.fill_bytes(dest))
            .expect("Rng was invoked in a non-hiding context")
    }

    #[inline]
    fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
        match &mut self.r {
            Some(r) => r.try_fill_bytes(dest),
            None => Err(NonZeroU32::new(rand_core::Error::CUSTOM_START).unwrap().into()),
        }
    }
}

impl<TargetField: PrimeField, BaseField: PrimeField, D: Digest> FiatShamirRng<TargetField, BaseField>
    for FiatShamirChaChaRng<TargetField, BaseField, D>
{
    fn new() -> Self {
        Self {
            r: None,
            seed: None,
            _target_field: PhantomData,
            _base_field: PhantomData,
            _digest: PhantomData,
        }
    }

    fn absorb_nonnative_field_elements(&mut self, elems: &[TargetField], _: OptimizationType) {
        let mut bytes = Vec::new();
        for elem in elems {
            elem.write(&mut bytes).expect("failed to convert to bytes");
        }
        self.absorb_bytes(&bytes);
    }

    fn absorb_native_field_elements<T: ToConstraintField<BaseField>>(&mut self, src: &[T]) {
        let mut elems = Vec::<BaseField>::new();
        for elem in src.iter() {
            elems.append(&mut elem.to_field_elements().unwrap());
        }

        let mut bytes = Vec::new();
        for elem in elems.iter() {
            elem.write(&mut bytes).expect("failed to convert to bytes");
        }
        self.absorb_bytes(&bytes);
    }

    fn absorb_bytes(&mut self, elements: &[u8]) {
        let mut bytes = elements.to_vec();
        // If a seed exists, extend the byte vector to include the existing seed.
        if let Some(seed) = &self.seed {
            bytes.extend_from_slice(seed);
        }

        let new_seed = (*D::digest(&bytes).as_slice()).to_vec();
        self.seed = Some(new_seed.to_vec());

        let mut seed = [0u8; 32];
        for (i, byte) in new_seed.as_slice().iter().enumerate() {
            seed[i] = *byte;
        }

        self.r = Some(ChaChaRng::from_seed(seed));
    }

    fn squeeze_nonnative_field_elements(
        &mut self,
        num: usize,
        _: OptimizationType,
    ) -> Result<Vec<TargetField>, FiatShamirError> {
        // Ensure the RNG is initialized.
        let rng = match &mut self.r {
            Some(rng) => rng,
            None => return Err(FiatShamirError::UninitializedRNG),
        };

        let mut res = Vec::<TargetField>::new();
        for _ in 0..num {
            res.push(TargetField::rand(rng));
        }
        Ok(res)
    }

    fn squeeze_native_field_elements(&mut self, num: usize) -> Result<Vec<BaseField>, FiatShamirError> {
        // Ensure the RNG is initialized.
        let rng = match &mut self.r {
            Some(rng) => rng,
            None => return Err(FiatShamirError::UninitializedRNG),
        };

        let mut res = Vec::<BaseField>::new();
        for _ in 0..num {
            res.push(BaseField::rand(rng));
        }
        Ok(res)
    }

    fn squeeze_128_bits_nonnative_field_elements(&mut self, num: usize) -> Result<Vec<TargetField>, FiatShamirError> {
        // Ensure the RNG is initialized.
        let rng = match &mut self.r {
            Some(rng) => rng,
            None => return Err(FiatShamirError::UninitializedRNG),
        };

        let mut res = Vec::<TargetField>::new();
        for _ in 0..num {
            let mut x = [0u8; 16];
            rng.fill_bytes(&mut x);
            res.push(TargetField::from_random_bytes(&x).unwrap());
        }
        Ok(res)
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    use snarkvm_curves::bls12_377::{Fq, Fr};
    use snarkvm_utilities::rand::UniformRand;

    use blake2::Blake2s;
    use rand_chacha::ChaChaRng;

    const NUM_ABSORBED_RAND_FIELD_ELEMS: usize = 10;
    const NUM_ABSORBED_RAND_BYTE_ELEMS: usize = 10;
    const SIZE_ABSORBED_BYTE_ELEM: usize = 64;

    const NUM_SQUEEZED_FIELD_ELEMS: usize = 10;
    const NUM_SQUEEZED_SHORT_FIELD_ELEMS: usize = 10;

    #[test]
    fn test_chacharng() {
        let mut rng = ChaChaRng::seed_from_u64(123456789u64);

        let mut absorbed_rand_field_elems = Vec::new();
        for _ in 0..NUM_ABSORBED_RAND_FIELD_ELEMS {
            absorbed_rand_field_elems.push(Fr::rand(&mut rng));
        }

        let mut absorbed_rand_byte_elems = Vec::<Vec<u8>>::new();
        for _ in 0..NUM_ABSORBED_RAND_BYTE_ELEMS {
            absorbed_rand_byte_elems.push((0..SIZE_ABSORBED_BYTE_ELEM).map(|_| u8::rand(&mut rng)).collect());
        }

        let mut fs_rng = FiatShamirChaChaRng::<Fr, Fq, Blake2s>::new();
        fs_rng.absorb_nonnative_field_elements(&absorbed_rand_field_elems, OptimizationType::Weight);
        for absorbed_rand_byte_elem in absorbed_rand_byte_elems {
            fs_rng.absorb_bytes(&absorbed_rand_byte_elem);
        }

        let _squeezed_fields_elems =
            fs_rng.squeeze_nonnative_field_elements(NUM_SQUEEZED_FIELD_ELEMS, OptimizationType::Weight);
        let _squeezed_short_fields_elems =
            fs_rng.squeeze_128_bits_nonnative_field_elements(NUM_SQUEEZED_SHORT_FIELD_ELEMS);
    }
}