1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
// Copyright (C) 2019-2021 Aleo Systems Inc.
// This file is part of the snarkVM library.

// The snarkVM library is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// The snarkVM library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with the snarkVM library. If not, see <https://www.gnu.org/licenses/>.

use crate::{
    fiat_shamir::{AlgebraicSponge, FiatShamirError, FiatShamirRng},
    PhantomData,
};
use snarkvm_fields::{FieldParameters, PrimeField, ToConstraintField};
use snarkvm_gadgets::{
    nonnative::{
        params::{get_params, OptimizationType},
        AllocatedNonNativeFieldVar,
    },
    overhead,
};
use snarkvm_utilities::BigInteger;

use rand_core::{Error, RngCore};

/// An RNG from any algebraic sponge
pub struct FiatShamirAlgebraicSpongeRng<TargetField: PrimeField, BaseField: PrimeField, S: AlgebraicSponge<BaseField>> {
    /// The algebraic sponge.
    pub(super) s: S,
    #[doc(hidden)]
    _target_field: PhantomData<TargetField>,
    #[doc(hidden)]
    _base_field: PhantomData<BaseField>,
}

impl<TargetField: PrimeField, BaseField: PrimeField, S: AlgebraicSponge<BaseField>>
    FiatShamirRng<TargetField, BaseField> for FiatShamirAlgebraicSpongeRng<TargetField, BaseField, S>
{
    fn new() -> Self {
        Self {
            s: S::new(),
            _target_field: PhantomData,
            _base_field: PhantomData,
        }
    }

    fn absorb_nonnative_field_elements(&mut self, elems: &[TargetField], ty: OptimizationType) {
        Self::push_elements_to_sponge(&mut self.s, elems, ty);
    }

    fn absorb_native_field_elements<T: ToConstraintField<BaseField>>(&mut self, src: &[T]) {
        let mut elems = Vec::<BaseField>::new();
        for elem in src.iter() {
            elems.append(&mut elem.to_field_elements().unwrap());
        }
        self.s.absorb(&elems);
    }

    fn absorb_bytes(&mut self, elems: &[u8]) {
        let capacity = BaseField::size_in_bits() - 1;
        let mut bits = Vec::<bool>::new();
        for elem in elems.iter() {
            bits.append(&mut vec![
                elem & 128 != 0,
                elem & 64 != 0,
                elem & 32 != 0,
                elem & 16 != 0,
                elem & 8 != 0,
                elem & 4 != 0,
                elem & 2 != 0,
                elem & 1 != 0,
            ]);
        }
        let elements = bits
            .chunks(capacity)
            .map(|bits| BaseField::from_repr(BaseField::BigInteger::from_bits_be(bits.to_vec())).unwrap())
            .collect::<Vec<BaseField>>();

        self.s.absorb(&elements);
    }

    fn squeeze_nonnative_field_elements(
        &mut self,
        num: usize,
        _: OptimizationType,
    ) -> Result<Vec<TargetField>, FiatShamirError> {
        Ok(Self::get_elements_from_sponge(&mut self.s, num, false))
    }

    fn squeeze_native_field_elements(&mut self, num: usize) -> Result<Vec<BaseField>, FiatShamirError> {
        Ok(self.s.squeeze(num))
    }

    fn squeeze_128_bits_nonnative_field_elements(&mut self, num: usize) -> Result<Vec<TargetField>, FiatShamirError> {
        Ok(Self::get_elements_from_sponge(&mut self.s, num, true))
    }
}

impl<TargetField: PrimeField, BaseField: PrimeField, S: AlgebraicSponge<BaseField>> RngCore
    for FiatShamirAlgebraicSpongeRng<TargetField, BaseField, S>
{
    fn next_u32(&mut self) -> u32 {
        assert!(
            BaseField::size_in_bits() > 128,
            "The native field of the algebraic sponge is too small."
        );

        let mut dest = [0u8; 4];
        self.fill_bytes(&mut dest);

        u32::from_be_bytes(dest)
    }

    fn next_u64(&mut self) -> u64 {
        assert!(
            BaseField::size_in_bits() > 128,
            "The native field of the algebraic sponge is too small."
        );

        let mut dest = [0u8; 8];
        self.fill_bytes(&mut dest);

        u64::from_be_bytes(dest)
    }

    fn fill_bytes(&mut self, dest: &mut [u8]) {
        assert!(
            BaseField::size_in_bits() > 128,
            "The native field of the algebraic sponge is too small."
        );

        let capacity = BaseField::size_in_bits() - 128;
        let len = dest.len() * 8;

        let num_of_elements = (capacity + len - 1) / len;
        let elements = self.s.squeeze(num_of_elements);

        let mut bits = Vec::<bool>::new();
        for elem in elements.iter() {
            let mut elem_bits = elem.into_repr().to_bits_be();
            elem_bits.reverse();
            bits.extend_from_slice(&elem_bits[0..capacity]);
        }

        bits.truncate(len);
        bits.chunks_exact(8).enumerate().for_each(|(i, bits_per_byte)| {
            let mut byte = 0;
            for (j, bit) in bits_per_byte.iter().enumerate() {
                if *bit {
                    byte += 1 << j;
                }
            }
            dest[i] = byte;
        });
    }

    fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
        assert!(
            BaseField::size_in_bits() > 128,
            "The native field of the algebraic sponge is too small."
        );

        self.fill_bytes(dest);
        Ok(())
    }
}

impl<TargetField: PrimeField, BaseField: PrimeField, S: AlgebraicSponge<BaseField>>
    FiatShamirAlgebraicSpongeRng<TargetField, BaseField, S>
{
    /// Compress every two elements if possible. Provides a vector of (limb, num_of_additions), both of which are P::BaseField.
    pub fn compress_elements(src_limbs: &[(BaseField, BaseField)], ty: OptimizationType) -> Vec<BaseField> {
        let capacity = BaseField::size_in_bits() - 1;
        let mut dest_limbs = Vec::<BaseField>::new();

        let params = get_params(TargetField::size_in_bits(), BaseField::size_in_bits(), ty);

        let adjustment_factor_lookup_table = {
            let mut table = Vec::<BaseField>::new();

            let mut cur = BaseField::one();
            for _ in 1..=capacity {
                table.push(cur);
                cur.double_in_place();
            }

            table
        };

        let mut i = 0;
        let src_len = src_limbs.len();
        while i < src_len {
            let first = &src_limbs[i];
            let second = if i + 1 < src_len { Some(&src_limbs[i + 1]) } else { None };

            let first_max_bits_per_limb = params.bits_per_limb + overhead!(first.1 + &BaseField::one());
            let second_max_bits_per_limb = if let Some(second) = second {
                params.bits_per_limb + overhead!(second.1 + &BaseField::one())
            } else {
                0
            };

            if let Some(second) = second {
                if first_max_bits_per_limb + second_max_bits_per_limb <= capacity {
                    let adjustment_factor = &adjustment_factor_lookup_table[second_max_bits_per_limb];

                    dest_limbs.push(first.0 * adjustment_factor + &second.0);
                    i += 2;
                } else {
                    dest_limbs.push(first.0);
                    i += 1;
                }
            } else {
                dest_limbs.push(first.0);
                i += 1;
            }
        }

        dest_limbs
    }

    /// Push elements to sponge, treated in the non-native field representations.
    pub fn push_elements_to_sponge(sponge: &mut S, src: &[TargetField], ty: OptimizationType) {
        let mut src_limbs = Vec::<(BaseField, BaseField)>::new();

        for elem in src.iter() {
            let limbs =
                AllocatedNonNativeFieldVar::<TargetField, BaseField>::get_limbs_representations(elem, ty).unwrap();
            for limb in limbs.iter() {
                src_limbs.push((*limb, BaseField::one()));
                // specifically set to one, since most gadgets in the constraint world would not have zero noise (due to the relatively weak normal form testing in `alloc`)
            }
        }

        let dest_limbs = Self::compress_elements(&src_limbs, ty);
        sponge.absorb(&dest_limbs);
    }

    /// obtain random bits from hashchain.
    /// not guaranteed to be uniformly distributed, should only be used in certain situations.
    pub fn get_bits_from_sponge(sponge: &mut S, num_bits: usize) -> Vec<bool> {
        let bits_per_element = BaseField::size_in_bits() - 1;
        let num_elements = (num_bits + bits_per_element - 1) / bits_per_element;

        let src_elements = sponge.squeeze(num_elements);
        let mut dest_bits = Vec::<bool>::new();

        let skip = (BaseField::Parameters::REPR_SHAVE_BITS + 1) as usize;
        for elem in src_elements.iter() {
            // discard the highest bit
            let elem_bits = elem.into_repr().to_bits_be();
            dest_bits.extend_from_slice(&elem_bits[skip..]);
        }

        dest_bits
    }

    /// obtain random elements from hashchain.
    /// not guaranteed to be uniformly distributed, should only be used in certain situations.
    pub fn get_elements_from_sponge(
        sponge: &mut S,
        num_elements: usize,
        outputs_short_elements: bool,
    ) -> Vec<TargetField> {
        let num_bits_per_nonnative = if outputs_short_elements {
            128
        } else {
            TargetField::size_in_bits() - 1 // also omit the highest bit
        };
        let bits = Self::get_bits_from_sponge(sponge, num_bits_per_nonnative * num_elements);

        let mut lookup_table = Vec::<TargetField>::new();
        let mut cur = TargetField::one();
        for _ in 0..num_bits_per_nonnative {
            lookup_table.push(cur);
            cur.double_in_place();
        }

        let mut dest_elements = Vec::<TargetField>::new();
        bits.chunks_exact(num_bits_per_nonnative)
            .for_each(|per_nonnative_bits| {
                // technically, this can be done via BigInterger::from_bits; here, we use this method for consistency with the gadget counterpart
                let mut res = TargetField::zero();

                for (i, bit) in per_nonnative_bits.iter().rev().enumerate() {
                    if *bit {
                        res += &lookup_table[i];
                    }
                }

                dest_elements.push(res);
            });

        dest_elements
    }
}