
This diagram (on the following page) shows the interaction of the Marlin prover and verifier. It is similar to the diagrams
in the paper (Figure 5 in Section 5 and Figure 7 in Appendix E, in the latest ePrint version), but with two changes: it
shows not just the AHP but also the use of the polynomial commitments (the cryptography layer); and it aims to be fully
up-to-date with the recent optimizations to the codebase. This diagram, together with the diagrams in the paper, can act
as a “bridge” between the codebase and the theory that the paper describes.

1 Glossary of notation

F the finite field over which the R1CS instance is defined

x public input

w secret witness

H variable domain

KM matrix domain for matrix M

K argmaxKM
|KM |

X domain sized for input (not including witness)

vD(X) vanishing polynomial over domain D

sD1,D2
(X) “selector” polynomial over domains D1 ⊇ D2, defined as

|D2|vD1

|D1|vD2

uD(X,Y) bivariate derivative of vanishing polynomials over domain D

A,B,C R1CS instance matrices

A∗, B∗, C∗ shifted transpose of A,B,C matries given by M∗
a,b := Mb,a · uH(b, b) ∀a, b ∈ H

(optimization from Fractal, explained in Claim 6.7 of that paper)

rowM , colM , valM LDEs of (respectively) row positions, column positions, and values of non-zero elements of matrix M∗

rowcolM
LDE of the element-wise product of row and col, given separately for efficiency

(namely to allow this product to be part of a linear combination)

P prover

V verifier

Vp
V with “oracle” access to polynomial p (via commitments provided

by the indexer, later opened as necessary by P)

b bound on the number of queries

rM (X,Y) an intermediate polynomial defined by rM (X,Y) = M∗(Y,X)

1

2 Diagram

P(F, H,K,A,B,C, x, w) V row,col,rowcol,valA∗ ,valB∗ ,valC∗ (F, H,K, x)

z := (x,w), zA := Az, zB := Bz
sample ŵ(X) ∈ F<|w|+b[X] and ẑA(X), ẑB(X) ∈ F<|H|+b[X]
sample mask poly m(X) ∈ F<3|H|+2b−2[X] such that

∑
κ∈H m(κ) = 0

commitments cmŵ, cmẑA , cmẑB , cmm

ηA, ηB , ηC ← F
α← F \H

ηA, ηB , ηC , α ∈ F

compute t(X) :=
∑

M ηMrM (α,X)

sumcheck for m(X) + uH(α,X) (
∑

M ηM ẑM (X))− t(X)ẑ(X) over H

let ẑC(X) := ẑA(X) · ẑB(X)
find g1(X) ∈ F|H|−1[X] and h1(X) such that
m(X) + uH(α,X)(

∑
M ηM ẑM (X))− t(X)ẑ(X) = h1(X)vH(X) +Xg1(X) (∗)

commitments cmg1 , cmh1

β ← F \H
β ∈ F

for each M ∈ {A,B,C}, sumcheck for vH(β)vH(α)valM∗ (X)
(β−row(X))(α−col(X)) over KM

let aM (X) := vH(β)vH(α)valM∗(X)

let bM (X) := (β − rowM (X))(α− colM (X))

= αβ − αrowM∗(X)− βcolM∗(X) + rowcolM∗(X) (over KM)

find gM (X), hM (X) ∈ F|KM |−1[X] and σM ∈ F s.t.
hM (X)vKM

(X) = aM (X)− bM (X)(XgM (X) + σM/|KM |)
commitments cmgA , cmgB , cmgC , and claimed sums σA, σB , σC

δA, δB , δC ← F

let h(X) :=
∑

M∈{A,B,C}(δMhM (X)|KM |/|K|) (mod vK)

commitment cmh

γ ← F

V will need to check the following:

vK(γ)h(γ) −
∑

M∈{A,B,C}

δMsK,KM
(γ)(aM (γ)− bM (γ)(γgM (γ) + σM/|KM |))︸ ︷︷ ︸
inner(γ)

?
= 0

Compute x̂(X) ∈ F<|x|[X] from input x

To verify (∗), V will compute t :=
∑

M∈{A,B,C} ηMσM/|KM |, and will need to check the following:

s(β) + vH(α, β)(ηAẑA(β) + ηC ẑB(β)ẑA(β) + ηB ẑB(β))− tvX(β)ŵ(β)− tx̂(β)− vH(β)h1(β)− βg1(β)︸ ︷︷ ︸
outer(β)

?
= 0

vgA := gA(γ), vgB := gB(γ), vgC := gC(γ)

vg1 := g1(β), vẑB := ẑB(β)

vgA , vgB , vgCvg1 , vẑB

use cmh, and for each M ∈ {A,B,C}, index commitments to rowM , colM , rowcolM , valM , evaluation gM (γ), and sum σM

to construct virtual commitment vcminner

use commitments cmm, cmẑA , cmŵ, cmh1
and evaluations ẑB(β), g1(β) and sums σA, σB , σC

to construct virtual commitment vcmouter

ξ1, . . . , ξ5 ← F

ξ1, . . . , ξ5

use PC.Prove with randomness ξ1, . . . , ξ5 to
construct a batch opening proof π of the following:
(cmgA , cmgB , cmgC , vcminner) at γ evaluate to (vgA , vgB , vgC , 0) (∗∗)
(cmg1 , cmẑB , cmt, vcmouter) at β evaluate to (vg1 , vẑB , 0) (∗)

π

verify π with PC.Verify, using randomness ξ1, . . . , ξ5,
evaluations vgA , vgB , vgC , vg1 , vẑB , and

commitments cmgA , cmgB , cmgC , vcminner, cmg1 , cmẑB , vcminner

2

