This diagram (on the following page) shows the interaction of the Marlin prover and verifier. It is similar to the diagrams in the paper (Figure 5 in Section 5 and Figure 7 in Appendix E, in the latest ePrint version), but with two changes: it shows not just the AHP but also the use of the polynomial commitments (the cryptography layer); and it aims to be fully up-to-date with the recent optimizations to the codebase. This diagram, together with the diagrams in the paper, can act as a "bridge" between the codebase and the theory that the paper describes.

1 Glossary of notation

F	the finite field over which the R1CS instance is defined
x	public input
w	secret witness
H	variable domain
K_{M}	matrix domain for matrix M
K	$\arg \max _{K_{M}}\left\|K_{M}\right\|$
X	domain sized for input (not including witness)
$v_{D}(X)$	vanishing polynomial over domain D
$s_{D_{1}, D_{2}}(X)$	"selector" polynomial over domains $D_{1} \supseteq D_{2}$, defined as $\frac{\left\|D_{2}\right\| v_{D_{1}}}{\left\|D_{1}\right\| v_{D_{2}}}$
$u_{D}(X, Y)$	bivariate derivative of vanishing polynomials over domain D
A, B, C	R1CS instance matrices
A^{*}, B^{*}, C^{*}	shifted transpose of A, B, C matries given by $M_{a, b}^{*}:=M_{b, a} \cdot u_{H}(b, b) \forall a, b \in H$ (optimization from Fractal, explained in Claim 6.7 of that paper)
$\operatorname{row}_{M}, \operatorname{col}_{M}, \mathrm{val}_{M}$	LDEs of (respectively) row positions, column positions, and values of non-zero elements of matrix M^{*}
rowcol_{M}	LDE of the element-wise product of row and col, given separately for efficiency (namely to allow this product to be part of a linear combination)
\mathcal{P}	prover
\mathcal{V}	verifier
\mathcal{V}^{p}	\mathcal{V} with "oracle" access to polynomial p (via commitments provided by the indexer, later opened as necessary by \mathcal{P})
b	bound on the number of queries
$r_{M}(X, Y)$	an intermediate polynomial defined by $r_{M}(X, Y)=M^{*}(Y, X)$

2 Diagram

$z:=(x, w), z_{A}:=A z, z_{B}:=B z$
sample $\hat{w}(X) \in \mathbb{F}^{<|w|+\mathrm{b}}[X]$ and $\hat{z}_{A}(X), \hat{z}_{B}(X) \in \mathbb{F}^{<|H|+\mathrm{b}}[X]$
sample mask poly $m(X) \in \mathbb{F}^{<3|H|+2 \mathrm{~b}-2}[X]$ such that $\sum_{\kappa \in H} m(\kappa)=0$
\qquad
compute $t(X):=\sum_{M} \eta_{M} r_{M}(\alpha, X)$
sumcheck for $m(X)+u_{H}(\alpha, X)\left(\sum_{M} \eta_{M} \hat{z}_{M}(X)\right)-t(X) \hat{z}(X)$ over H
let $\hat{z}_{C}(X):=\hat{z}_{A}(X) \cdot \hat{z}_{B}(X)$
find $g_{1}(X) \in \mathbb{F}^{|H|-1}[X]$ and $h_{1}(X)$ such that

$$
\begin{equation*}
m(X)+u_{H}(\alpha, X)\left(\sum_{M} \eta_{M} \hat{z}_{M}(X)\right)-t(X) \hat{z}(X)=h_{1}(X) v_{H}(X)+X g_{1}(X) \tag{*}
\end{equation*}
$$

\qquad
$\beta \in \mathbb{F}$
for each $M \in\{A, B, C\}$, sumcheck for $\frac{v_{H}(\beta) v_{H}(\alpha) \operatorname{val}_{M *}(X)}{(\beta-\operatorname{row}(X))(\alpha-\operatorname{col}(X))}$ over K_{M}
let $a_{M}(X):=v_{H}(\beta) v_{H}(\alpha) \operatorname{val}_{M^{*}}(X)$
let $b_{M}(X):=\left(\beta-\operatorname{row}_{M}(X)\right)\left(\alpha-\operatorname{col}_{M}(X)\right)$
$=\alpha \beta-\operatorname{\alpha row}_{M^{*}}(X)-\beta \operatorname{col}_{M^{*}}(X)+\operatorname{rowcol}_{M^{*}}(X)\left(\right.$ over $\left.K_{M}\right)$
find $g_{M}(X), h_{M}(X) \in \mathbb{F}^{\left|K_{M}\right|-1}[X]$ and $\sigma_{M} \in \mathbb{F}$ s.t.
$h_{M}(X) v_{K_{M}}(X)=a_{M}(X)-b_{M}(X)\left(X g_{M}(X)+\sigma_{M} /\left|K_{M}\right|\right)$
\longrightarrow commitments $\mathrm{cm}_{g_{A}}, \mathrm{~cm}_{g_{B}}, \mathrm{~cm}_{g_{C}}$, and claimed sums $\sigma_{A}, \sigma_{B}, \sigma_{C} \longrightarrow$
$\longleftarrow \delta_{A}, \delta_{B}, \delta_{C} \leftarrow \mathbb{F}$
let $h(X):=\sum_{M \in\{A, B, C\}}\left(\delta_{M} h_{M}(X)\left|K_{M}\right| /|K|\right)\left(\bmod v_{K}\right)$
\qquad

$$
\longleftarrow \quad \gamma \leftarrow \mathbb{F}
$$

\mathcal{V} will need to check the following:
$: \underbrace{}_{M \in\{A, B, C\}} \delta_{M} s_{K, K_{M}}(\gamma)(\gamma) h(\gamma)-a_{M}(\gamma)-b_{M}(\gamma)\left(\gamma g_{M}(\gamma)+\sigma_{M} /\left|K_{M}\right|\right)) \stackrel{?}{=} 0{ }_{0}$
Compute $\hat{x}(X) \in \mathbb{F}^{<|x|}[X]$ from input x
To verify $(*), \mathcal{V}$ will compute $t:=\sum_{M \in\{A, B, C\}} \eta_{M} \sigma_{M} /\left|K_{M}\right|$, and will need to check the following:
$\underbrace{s(\beta)+v_{H}(\alpha, \beta)\left(\eta_{A} \hat{z}_{A}(\beta)+\eta_{C} \hat{z}_{B}(\beta) \hat{z}_{A}(\beta)+\eta_{B} \hat{z}_{B}(\beta)\right)-t v_{X}(\beta) \hat{w}(\beta)-t \hat{x}(\beta)-v_{H}(\beta) h_{1}(\beta)-\beta g_{1}(\beta)} \stackrel{?}{=} 0$ outer (β)
$v_{g_{A}}:=g_{A}(\gamma), v_{g_{B}}:=g_{B}(\gamma), v_{g_{C}}:=g_{C}(\gamma)$
$v_{g_{1}}:=g_{1}(\beta), v_{\hat{z}_{B}}:=\hat{z}_{B}(\beta)$

$$
-v_{g_{A}}, v_{g_{B}}, v_{g_{C}} v_{g_{1}}, v_{\hat{z}_{B}}
$$

use cm_{h}, and for each $M \in\{A, B, C\}$, index commitments to $\operatorname{row}_{M}, \operatorname{col}_{M}, \operatorname{rowcol}_{M}, \operatorname{val}_{M}$, evaluation $g_{M}(\gamma)$, and sum σ_{M} to construct virtual commitment $\mathrm{vcm}_{\text {inner }}$
use commitments $\mathrm{cm}_{m}, \mathrm{~cm}_{\hat{z}_{A}}, \mathrm{~cm}_{\hat{w}}, \mathrm{~cm}_{h_{1}}$ and evaluations $\hat{z}_{B}(\beta), g_{1}(\beta)$ and sums $\sigma_{A}, \sigma_{B}, \sigma_{C}$ to construct virtual commitment $\mathrm{vcm}_{\text {outer }}$

$$
\xi_{1}, \ldots, \xi_{5} \leftarrow F
$$

ξ_{1}, \ldots, ξ_{5}
use PC . Prove with randomness ξ_{1}, \ldots, ξ_{5} to
construct a batch opening proof π of the following:
$\left(\mathrm{cm}_{g_{A}}, \mathrm{~cm}_{g_{B}}, \mathrm{~cm}_{g_{C}}, \mathrm{vcm} \mathrm{m}_{\text {inner }}\right)$ at γ evaluate to $\left(v_{g_{A}}, v_{g_{B}}, v_{g_{C}}, 0\right) \quad(* *)$
$\left(\mathrm{cm}_{g_{1}}, \mathrm{~cm}_{\hat{z}_{B}}, \mathrm{~cm}_{t}, \mathrm{vcm} \mathrm{outer}\right)$ at β evaluate to $\left(v_{g_{1}}, v_{\hat{z}_{B}}, 0\right) \quad(*)$

