This diagram (on the following page) shows the interaction of the Marlin prover and verifier. It is similar to the diagrams
in the paper (Figure 5 in Section 5 and Figure 7 in Appendix E, in the latest ePrint version), but with two changes: it
shows not just the AHP but also the use of the polynomial commitments (the cryptography layer); and it aims to be fully
up-to-date with the recent optimizations to the codebase. This diagram, together with the diagrams in the paper, can act
as a “bridge” between the codebase and the theory that the paper describes.

1 Glossary of notation

F the finite field over which the R1CS instance is defined
T public input
w secret witness
o variable domain
Ky matrix domain for matrix M
K argmaxy | K|
X domain sized for input (not including witness)
vp(X) vanishing polynomial over domain D
$D,.Ds(X) “selector” polynomial over domains D; O D», defined as Igf::i ;
up(X,Y) bivariate derivative of vanishing polynomials over domain D
A, B, C R1CS instance matrices

A% B* O shifted transpose of A, B, C' matries given by Mgy =My - up (b,b) Va,b e H
T (optimization from Fractal, explained in Claim 6.7 of that paper)

row s, colpyr, valyr | LDEs of (respectively) row positions, column positions, and values of non-zero elements of matrix M*

LDE of the element-wise product of row and col, given separately for efficiency

rowcol ps
(namely to allow this product to be part of a linear combination)
P prover
1% verifier
" V with “oracle” access to polynomial p (via commitments provided
by the indexer, later opened as necessary by P)
b bound on the number of queries
ru(X,Y) an intermediate polynomial defined by ry (X,Y) = M*(Y, X)

2 Diagram

P(]F, H, [(7 147 B, C’ z, w) Vrow,col,rowcol,valA* wval g val o= (F, H, K, z)

z:= (x,w),z4:= Az,2z5 := Bz
sample w(X) € F<I®I4P[X] and 24(X), 2p(X) € F<HI+b[X)]
sample mask poly m(X) € F<3IHI+26=2[X] such that 3,y m(x) =0

commitments cmg,cmsz,,cmsz,, cmy,

NA,NB,NC < F
a+—F\H
1A, NB,NC, ¢ € F
compute t(X) := >y nvrar (o, X)
sumcheck for m(X) + up(a, X) (O mvim (X)) — t(X)2(X) over H
let é’c(X) = ,?:’A(X) . ,ZA,’B(X)
find g1(X) € FIH#I=1[X] and hy(X) such that
m(X) +up (o, X)X mv2n (X)) — H(X)2(X) = h(X)og(X) + Xg1(X) (%)
commitments cmg, , cmp,
B+ F\H
pel
for each M € {A, B,C}, sumcheck for éffi (f) 3:&()()1()131%(())(())) over K
let =g (B)vy(a)valpy(X)
let bj\[(X) = (B — rOW]u(X))(Oé — CO|]W(X))
= aff — arow« (X) — Seolpr= (X) + rowcol (X)) (over Kar)
find gar(X), has(X) € FIEmI=1[X] and o € F s.t.
hat (X)vie, (X) = — b (X)(Xgnr (X) + onr /| Knl)
commitments cmg,,cmgy,,cmy, and claimed sums 04,08,00 ———
5A7 (53, 50 —F
let h(X) := > preqap.oy(Omhn (X)[Kupl/|K]) (mod vk)
commitment cmy,
v+ F
\7771‘
| V will need to check the following: |
|
| |
Lo (Y)h(y) - Z dn s i (V) (an (¥) = b (V) (vam (v) + one /| K |)) Z0 3
! Me{A,B.C} |
- inmer(y) _ _ _ o ____ |
r---==-="°-"°-="°="°-=-"-="°-="="="="="="="="="=”"=”"=- = |
|
! Compute &(X) € F<I#I[X] from input = |
|
| |
| To verify (x), V will compute ¢ := "¢ 4 5 oy Muon /| K, and will need to check the following: l
i S(ﬁ)-l—(‘u((})))(1}37:’14(5)-’-//(f[;(j)éA(ﬁ)-’-//BiB())))—TI“\(J))’IZ)([})—T?(ﬂ _(U(ﬂhl(/@))_))(]1())) ;0 i
: outer(S3) :

Vga = 94(7), Vg5 = 9B(7),Vge = gc(7)
Vg, = 91(6)7023 = 23(6)

UgarVgpsVgcVg1, Vip

use cmy, and for each M € {4, B, C}, index commitments to rows, col s, rowcolys, valys, evaluation gy (v), and sum o,
to construct virtual commitment vemipner

use commitments cm,,,cms,, cmy,cmy, and evaluations Zp(/3), g1 () and sums o4, 05, 0¢
to construct virtual commitment vemgter

517 s a£5 — F
517 s 755

use PC.Prove with randomness &1, ...,&; to
construct a batch opening proof 7 of the following:
(cmg,, Mgy, €My, VCMinner) at 7y evaluate to (vg,, Vgy,Vge,0) (k)
(cmg,,cmz,, cmy, veMoyter) at [evaluate to (vg,,vz,,0) (%)

T

verify 7 with PC.Verify, using randomness 1, ..., &5,

evaluations vy, , Vg, Vge, Vgr » Vsp, and
commitments cmgy,,Cmg,, CMy, VCMinper, CMg, , CMz o, VCMinner

