This diagram (on the following page) shows the interaction of the Marlin prover and verifier. It is similar to the diagrams in the paper (Figure 5 in Section 5 and Figure 7 in Appendix E, in the latest ePrint version), but with two changes: it shows not just the AHP but also the use of the polynomial commitments (the cryptography layer); and it aims to be fully up-to-date with the recent optimizations to the codebase. This diagram, together with the diagrams in the paper, can act as a "bridge" between the codebase and the theory that the paper describes.

1 Glossary of notation

\mathbb{F}	the finite field over which the R1CS instance is defined
x	public input
w	secret witness
Н	variable domain
K_M	matrix domain for matrix M
K	$rg\max_{K_M} K_M $
X	domain sized for input (not including witness)
$v_D(X)$	vanishing polynomial over domain D
$s_{D_1,D_2}(X)$	"selector" polynomial over domains $D_1 \supseteq D_2$, defined as $\frac{ D_2 v_{D_1}}{ D_1 v_{D_2}}$
$u_D(X,Y)$	bivariate derivative of vanishing polynomials over domain ${\cal D}$
A, B, C	R1CS instance matrices
A^*, B^*, C^*	shifted transpose of A, B, C matrices given by $M_{a,b}^* := M_{b,a} \cdot u_H(b,b) \ \forall a, b \in H$
	(optimization from Fractal, explained in Claim 6.7 of that paper)
row_M,col_M,val_M	LDEs of (respectively) row positions, column positions, and values of non-zero elements of matrix M^*
$rowcol_M$	LDE of the element-wise product of row and col, given separately for efficiency
	(namely to allow this product to be part of a <i>linear</i> combination)
\mathcal{P}	prover
\mathcal{V}	verifier
\mathcal{V}^p	\mathcal{V} with "oracle" access to polynomial p (via commitments provided
	by the indexer, later opened as necessary by \mathcal{P})
b	bound on the number of queries
$r_M(X,Y)$	an intermediate polynomial defined by $r_M(X,Y) = M^*(Y,X)$

2 Diagram

 $\mathcal{V}^{\mathrm{row},\mathrm{col},\mathrm{rowcol},\mathrm{val}_{A^*},\mathrm{val}_{B^*},\mathrm{val}_{C^*}}(\mathbb{F},H,K,x)$

 $\begin{array}{l} z := (x,w), z_A := Az, z_B := Bz \\ \text{sample } \hat{w}(X) \in \mathbb{F}^{<|w|+\mathfrak{b}}[X] \text{ and } \hat{z}_A(X), \hat{z}_B(X) \in \mathbb{F}^{<|H|+\mathfrak{b}}[X] \\ \text{sample mask poly } m(X) \in \mathbb{F}^{<3|H|+2\mathfrak{b}-2}[X] \text{ such that } \sum_{\kappa \in H} m(\kappa) = 0 \end{array}$

 $\eta_A, \eta_B, \eta_C \leftarrow \mathbb{F} \\ \alpha \leftarrow \mathbb{F} \setminus H$

 $-----\eta_A, \eta_B, \eta_C, \alpha \in \mathbb{F}$ ----

compute $t(X) := \sum_M \eta_M r_M(\alpha, X)$

 $\mathcal{P}(\mathbb{F}, H, K, A, B, C, x, w)$

sumcheck for $m(X) + u_H(\alpha, X) \left(\sum_M \eta_M \hat{z}_M(X)\right) - t(X)\hat{z}(X)$ over H $\begin{array}{l} \text{let } \hat{z}_C(X) := \hat{z}_A(X) \cdot \hat{z}_B(X) \\ \text{find } g_1(X) \in \mathbb{F}^{|H|-1}[X] \text{ and } h_1(X) \text{ such that} \end{array}$ $m(X) + u_H(\alpha, X)(\sum_M \eta_M \hat{z}_M(X)) - t(X)\hat{z}(X) = h_1(X)v_H(X) + Xg_1(X) \quad (*)$ -- commitments $\mathsf{cm}_{g_1}, \mathsf{cm}_{h_1}$ --- $\beta \leftarrow \mathbb{F} \setminus H$ $-\beta \in \mathbb{F}$ for each $M \in \{A, B, C\}$, sumcheck for $\frac{v_H(\beta)v_H(\alpha)\mathsf{val}_{M^*}(X)}{(\beta - \mathsf{row}(X))(\alpha - \mathsf{col}(X))}$ over K_M let $a_M(X) := v_H(\beta)v_H(\alpha)\mathsf{val}_{M^*}(X)$ let $b_M(X) := (\beta - \operatorname{row}_M(X))(\alpha - \operatorname{col}_M(X))$ $= \alpha\beta - \alpha \operatorname{row}_{M^*}(X) - \beta \operatorname{col}_{M^*}(X) + \operatorname{rowcol}_{M^*}(X) \text{ (over } K_M)$ find $g_M(X), h_M(X) \in \mathbb{F}^{|K_M|-1}[X]$ and $\sigma_M \in \mathbb{F}$ s.t. $h_M(X)v_{K_M}(X) = a_M(X) - b_M(X)(Xg_M(X) + \sigma_M/|K_M|)$ – commitments $\mathsf{cm}_{g_A}, \mathsf{cm}_{g_B}, \mathsf{cm}_{g_C}$, and claimed sums $\sigma_A, \sigma_B, \sigma_C$ – $----\delta_A, \delta_B, \delta_C \leftarrow \mathbb{F}$ let $h(X) := \sum_{M \in \{A, B, C\}} (\delta_M h_M(X) |K_M| / |K|) \pmod{v_K}$ — commitment cm_h -_____ ${\mathcal V}$ will need to check the following: $v_K(\gamma)h(\gamma) - \sum \delta_M s_{K,K_M}(\gamma)(a_M(\gamma) - b_M(\gamma)(\gamma g_M(\gamma) + \sigma_M/|K_M|)) \stackrel{?}{=} 0$ $M \in \{A, B, C\}$ $\operatorname{inner}(\gamma)$ Compute $\hat{x}(X) \in \mathbb{F}^{<|x|}[X]$ from input x To verify (*), \mathcal{V} will compute $t := \sum_{M \in \{A,B,C\}} \eta_M \sigma_M / |K_M|$, and will need to check the following: $s(\beta) + v_H(\alpha, \beta)(\eta_A \hat{z}_A(\beta) + \eta_C \hat{z}_B(\beta) \hat{z}_A(\beta) + \eta_B \hat{z}_B(\beta)) - tv_X(\beta) \hat{w}(\beta) - t\hat{x}(\beta) - v_H(\beta) h_1(\beta) - \beta g_1(\beta) \stackrel{?}{=} 0$ $\mathsf{outer}(\beta)$

$$\begin{split} v_{g_A} &:= g_A(\gamma), v_{g_B} := g_B(\gamma), v_{g_C} := g_C(\gamma) \\ v_{g_1} &:= g_1(\beta), v_{\hat{z}_B} := \hat{z}_B(\beta) \end{split}$$

 $---- v_{g_A}, v_{g_B}, v_{g_C}v_{g_1}, v_{\hat{z}_B} --$

use cm_h , and for each $M \in \{A, B, C\}$, index commitments to $\mathsf{row}_M, \mathsf{col}_M, \mathsf{rowcol}_M, \mathsf{val}_M$, evaluation $g_M(\gamma)$, and sum σ_M to construct virtual commitment $\mathsf{vcm}_{\mathsf{inner}}$

use commitments $\operatorname{cm}_m, \operatorname{cm}_{\hat{z}_A}, \operatorname{cm}_{\hat{w}}, \operatorname{cm}_{h_1}$ and evaluations $\hat{z}_B(\beta), g_1(\beta)$ and sums $\sigma_A, \sigma_B, \sigma_C$ to construct virtual commitment $\operatorname{vcm}_{\operatorname{outer}}$

$\longleftarrow \qquad \xi_1,\ldots,\xi_5$	
use PC.Prove with randomness ξ_1, \ldots, ξ_5 to construct a batch opening proof π of the following: $(\operatorname{cm}_{g_A}, \operatorname{cm}_{g_B}, \operatorname{cm}_{g_C}, \operatorname{vcm}_{\operatorname{inner}})$ at γ evaluate to $(v_{g_A}, v_{g_B}, v_{g_C}, 0)$ (**) $(\operatorname{cm}_{g_1}, \operatorname{cm}_{\hat{z}_B}, \operatorname{cm}_t, \operatorname{vcm}_{\operatorname{outer}})$ at β evaluate to $(v_{g_1}, v_{\hat{z}_B}, 0)$ (*)	

verify π with PC. Verify, using randomness ξ_1, \ldots, ξ_5 , evaluations $v_{g_A}, v_{g_B}, v_{g_C}, v_{g_1}, v_{\hat{z}_B}$, and commitments $\mathsf{cm}_{g_A}, \mathsf{cm}_{g_B}, \mathsf{cm}_{g_C}, \mathsf{vcm_{inner}}, \mathsf{cm}_{g_1}, \mathsf{cm}_{\hat{z}_B}, \mathsf{vcm_{inner}}$

 $\xi_1, \ldots, \xi_5 \leftarrow F$