1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
// Copyright 2020 MaidSafe.net limited.
//
// This SAFE Network Software is licensed to you under The General Public License (GPL), version 3.
// Unless required by applicable law or agreed to in writing, the SAFE Network Software distributed
// under the GPL Licence is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. Please review the Licences for the specific language governing
// permissions and limitations relating to use of the SAFE Network Software.

/// Common utility functions for writing test cases.
#[cfg(any(test, feature = "testing", feature = "simulated-payouts"))]
pub mod test_utils;

use crate::errors::Error;
use bincode::{deserialize, serialize};
use miscreant::{Aead, Aes128SivAead};
use rand::distributions::{Alphanumeric, Distribution, Standard};
use rand::rngs::OsRng;
use rand::{self, Rng};
use serde::{Deserialize, Serialize};

/// Length of the symmetric encryption key.
pub const SYM_ENC_KEY_LEN: usize = 32;

/// Length of the nonce used for symmetric encryption.
pub const SYM_ENC_NONCE_LEN: usize = 16;

/// Symmetric encryption key
pub type SymEncKey = [u8; SYM_ENC_KEY_LEN];

/// Symmetric encryption nonce
pub type SymEncNonce = [u8; SYM_ENC_NONCE_LEN];

/// Easily create a `BTreeSet`.
#[macro_export]
macro_rules! btree_set {
    ($($item:expr),*) => {{
        let mut _set = ::std::collections::BTreeSet::new();
        $(
            let _ = _set.insert($item);
        )*
        _set
    }};

    ($($item:expr),*,) => {
        btree_set![$($item),*]
    };
}

/// Easily create a `BTreeMap` with the key => value syntax.
#[macro_export]
macro_rules! btree_map {
    () => ({
        ::std::collections::BTreeMap::new()
    });

    ($($key:expr => $value:expr),*) => {{
        let mut _map = ::std::collections::BTreeMap::new();
        $(
            let _ = _map.insert($key, $value);
        )*
        _map
    }};

    ($($key:expr => $value:expr),*,) => {
        btree_map![$($key => $value),*]
    };
}

#[derive(Serialize, Deserialize)]
struct SymmetricEnc {
    nonce: SymEncNonce,
    cipher_text: Vec<u8>,
}

/// Generates a symmetric encryption key
pub fn generate_sym_enc_key() -> SymEncKey {
    rand::random()
}

/// Generates a nonce for symmetric encryption
pub fn generate_nonce() -> SymEncNonce {
    rand::random()
}

/// Symmetric encryption.
/// If `nonce` is `None`, then it will be generated randomly.
pub fn symmetric_encrypt(
    plain_text: &[u8],
    secret_key: &SymEncKey,
    nonce: Option<&SymEncNonce>,
) -> Result<Vec<u8>, Error> {
    let nonce = match nonce {
        Some(nonce) => *nonce,
        None => generate_nonce(),
    };

    let mut cipher = Aes128SivAead::new(secret_key);
    let cipher_text = cipher.encrypt(&nonce, &[], plain_text);

    Ok(serialize(&SymmetricEnc { nonce, cipher_text })?)
}

/// Symmetric decryption.
pub fn symmetric_decrypt(cipher_text: &[u8], secret_key: &SymEncKey) -> Result<Vec<u8>, Error> {
    let SymmetricEnc { nonce, cipher_text } = deserialize::<SymmetricEnc>(cipher_text)?;
    let mut cipher = Aes128SivAead::new(secret_key);
    cipher
        .decrypt(&nonce, &[], &cipher_text)
        .map_err(|_| Error::SymmetricDecipherFailure)
}

/// Generates a `String` from `length` random UTF-8 `char`s.  Note that the NULL character will be
/// excluded to allow conversion to a `CString` if required, and that the actual `len()` of the
/// returned `String` will likely be around `4 * length` as most of the randomly-generated `char`s
/// will consume 4 elements of the `String`.
pub fn generate_random_string(length: usize) -> String {
    let mut rng = OsRng;
    ::std::iter::repeat(())
        .map(|()| rng.gen::<char>())
        .filter(|c| *c != '\u{0}')
        .take(length)
        .collect()
}

/// Generates a readable `String` using provided `length` and only ASCII characters.
pub fn generate_readable_string(length: usize) -> String {
    let mut rng = OsRng;
    ::std::iter::repeat(())
        .map(|()| rng.sample(Alphanumeric))
        .take(length)
        .collect()
}

/// Generates a random vector using provided `length`.
pub fn generate_random_vector<T>(length: usize) -> Vec<T>
where
    Standard: Distribution<T>,
{
    let mut rng = OsRng;
    ::std::iter::repeat(())
        .map(|()| rng.gen::<T>())
        .take(length)
        .collect()
}

/// Convert binary data to a diplay-able format
#[inline]
pub fn bin_data_format(data: &[u8]) -> String {
    let len = data.len();
    if len < 8 {
        return format!("[ {:?} ]", data);
    }

    format!(
        "[ {:02x} {:02x} {:02x} {:02x}..{:02x} {:02x} {:02x} {:02x} ]",
        data[0],
        data[1],
        data[2],
        data[3],
        data[len - 4],
        data[len - 3],
        data[len - 2],
        data[len - 1]
    )
}

#[cfg(test)]
mod tests {
    use super::*;

    const SIZE: usize = 10;

    // Test `generate_random_string` and that the results are not repeated.
    #[test]
    fn random_string() {
        let str0 = generate_random_string(SIZE);
        let str1 = generate_random_string(SIZE);
        let str2 = generate_random_string(SIZE);

        assert_ne!(str0, str1);
        assert_ne!(str0, str2);
        assert_ne!(str1, str2);

        assert_eq!(str0.chars().count(), SIZE);
        assert_eq!(str1.chars().count(), SIZE);
        assert_eq!(str2.chars().count(), SIZE);
    }

    // Test `generate_random_vector` and that the results are not repeated.
    #[test]
    fn random_vector() {
        let vec0 = generate_random_vector::<u8>(SIZE);
        let vec1 = generate_random_vector::<u8>(SIZE);
        let vec2 = generate_random_vector::<u8>(SIZE);

        assert_ne!(vec0, vec1);
        assert_ne!(vec0, vec2);
        assert_ne!(vec1, vec2);

        assert_eq!(vec0.len(), SIZE);
        assert_eq!(vec1.len(), SIZE);
        assert_eq!(vec2.len(), SIZE);
    }
}