1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
use itertools::izip;
use print_duration::print_duration;
use rand::{thread_rng, Rng};
use std::{
    f64,
    io::{stdout, Write},
    ops::Range,
    sync::{
        atomic::{AtomicUsize, Ordering},
        Arc,
    },
    thread,
    time::{Duration, Instant},
};

/// Random search
/// 
/// Randomly pick parameters for `simple_function` in the ranges `0..1`, `1..2`, and `3..4` and return the parameters which produce the minimum result from `simple_function` out of 10,000 samples.
/// 
/// And every 10ms print progress.
/// ```
/// use simple_optimization::random_search;
/// fn simple_function(list: &[f64; 3]) -> f64 { list.iter().sum() }
/// let best = random_search(
///     10000,
///     [0f64..1f64,1f64..2f64,3f64..4f64], 
///     simple_function,
///     Some(10)
/// );
/// assert!(best[0] < 0.1 && best[1] < 1.1 && best[2] < 3.1)
/// ```
pub fn random_search<const N: usize>(
    iterations: usize,
    ranges: [Range<f64>; N],
    f: fn(&[f64; N]) -> f64,
    polling: Option<u64>,
) -> [f64; N] {
    // Gets cpu data
    let cpus = num_cpus::get();
    let remainder = iterations % cpus;
    let per = iterations / cpus;

    let counter = Arc::new(AtomicUsize::new(0));
    let ranges_arc = Arc::new(ranges);
    let (best_value, best_params) = search(remainder, ranges_arc.clone(), f, counter.clone());

    // (handles,counters)
    let (handles, counters): (Vec<_>, Vec<Arc<AtomicUsize>>) = (0..cpus)
        .map(|_| {
            let ranges_clone = ranges_arc.clone();
            let counter = Arc::new(AtomicUsize::new(0));
            let counter_clone = counter.clone();
            (
                thread::spawn(move || search(per, ranges_clone, f, counter_clone)),
                counter,
            )
        })
        .unzip();

    if let Some(poll_rate) = polling {
        poll(
            poll_rate,
            counters,
            counter.load(Ordering::SeqCst),
            iterations,
        );
    }

    let joins: Vec<_> = handles.into_iter().map(|h| h.join().unwrap()).collect();

    let (_, best_params) = joins
        .into_iter()
        .fold((best_value, best_params), |(bv, bp), (v, p)| {
            if v < bv {
                (v, p)
            } else {
                (bv, bp)
            }
        });

    return best_params;

    fn search<const N: usize>(
        iterations: usize,
        ranges: Arc<[Range<f64>; N]>,
        f: fn(&[f64; N]) -> f64,
        counter: Arc<AtomicUsize>,
    ) -> (f64, [f64; N]) {
        let mut rng = thread_rng();
        let mut params = [Default::default(); N];

        let mut best_value = f64::MAX;
        let mut best_params = [Default::default(); N];
        for _ in 0..iterations {
            // Gen random values
            for (range, param) in ranges.iter().zip(params.iter_mut()) {
                *param = rng.gen_range(range.clone())
            }
            // Run function
            let new_value = f(&params);
            // Check best
            if new_value < best_value {
                best_value = new_value;
                best_params = params;
            }
            counter.fetch_add(1, Ordering::SeqCst);
        }
        return (best_value, best_params);
    }
}

/// Grid search
/// 
/// ```
/// use simple_optimization::grid_search;
/// fn simple_function(list: &[f64; 3]) -> f64 { list.iter().sum() }
/// let best = grid_search(
///     [10,10,10],
///     [0f64..1f64,1f64..2f64,3f64..4f64],
///     simple_function,
///     Some(10)
/// );
/// assert!(best[0] == 0.1 && best[1] == 1.1 && best[2] == 3.1)
/// ```
pub fn grid_search<const N: usize>(
    points: [usize; N],
    ranges: [Range<f64>; N],
    f: fn(&[f64; N]) -> f64,
    polling: Option<u64>,
) -> [f64; N] {
    // Compute step sizes
    let mut steps = [Default::default(); N];
    for (r, k, s) in izip!(ranges.iter(), points.iter(), steps.iter_mut()) {
        *s = (r.end - r.start) / *k as f64;
    }

    // Compute point values
    let point_values: Vec<Vec<f64>> = izip!(ranges.iter(), points.iter(), steps.iter())
        .map(|(r, k, s)| {
            (0..*k)
                .scan(r.start, |state, _| {
                    *state += *s;
                    Some(*state)
                })
                .collect()
        })
        .collect();

    return search_points(&point_values, f, polling);

    fn search_points<const N: usize>(
        point_values: &Vec<Vec<f64>>,
        f: fn(&[f64; N]) -> f64,
        polling: Option<u64>,
    ) -> [f64; N] {
        let mut start = [Default::default(); N];
        for (s, p) in start.iter_mut().zip(point_values.iter()) {
            *s = p[0];
        }
        let (_, params) = thread_search(point_values, f, start, 0, polling);
        return params;
    }
    fn thread_search<const N: usize>(
        point_values: &Vec<Vec<f64>>,
        f: fn(&[f64; N]) -> f64,
        mut point: [f64; N],
        index: usize,
        polling: Option<u64>,
    ) -> (f64, [f64; N]) {
        if index == point_values.len() - 1 {
            return (f(&point), point);
        }

        // (handles,counters)
        let (handles, counters): (Vec<_>, Vec<Arc<AtomicUsize>>) = point_values[index]
            .iter()
            .map(|p_value| {
                point[index] = *p_value;
                let point_values_clone = point_values.clone();
                let counter = Arc::new(AtomicUsize::new(0));
                let counter_clone = counter.clone();
                (
                    thread::spawn(move || {
                        search(&point_values_clone, f, point, index + 1, counter_clone)
                    }),
                    counter,
                )
            })
            .unzip();

        if let Some(poll_rate) = polling {
            let iterations = point_values.iter().map(|pvs| pvs.len()).product();
            poll(poll_rate, counters, 0, iterations);
        }

        let joins: Vec<_> = handles.into_iter().map(|h| h.join().unwrap()).collect();
        let (value, params) =
            joins
                .into_iter()
                .fold((f64::MAX, [Default::default(); N]), |(bv, bp), (v, p)| {
                    if v < bv {
                        (v, p)
                    } else {
                        (bv, bp)
                    }
                });
        return (value, params);
    }
    fn search<const N: usize>(
        point_values: &Vec<Vec<f64>>,
        f: fn(&[f64; N]) -> f64,
        mut point: [f64; N],
        index: usize,
        counter: Arc<AtomicUsize>,
    ) -> (f64, [f64; N]) {
        if index == point_values.len() {
            // panic!("hit here");
            counter.fetch_add(1, Ordering::SeqCst);
            return (f(&point), point);
        }

        let mut best_value = f64::MAX;
        let mut best_params = [Default::default(); N];
        for p_value in point_values[index].iter() {
            point[index] = *p_value;
            let (value, params) = search(point_values, f, point, index + 1, counter.clone());
            if value < best_value {
                best_value = value;
                best_params = params;
            }
        }
        return (best_value, best_params);
    }
}
fn poll(poll_rate: u64, counters: Vec<Arc<AtomicUsize>>, offset: usize, iterations: usize) {
    let start = Instant::now();
    let mut stdout = stdout();
    let mut count: usize = offset
        + counters
            .iter()
            .map(|c| c.load(Ordering::SeqCst))
            .sum::<usize>();
    println!("{:20}", iterations);
    while count < iterations {
        let percent = count as f32 / iterations as f32;
        let remaining_time_estimate = start.elapsed().div_f32(percent);
        print!(
            "\r{:20} ({:.2}%) {} / {}",
            count,
            100. * percent,
            print_duration(start.elapsed(), 0..3),
            print_duration(remaining_time_estimate, 0..3)
        );
        stdout.flush().unwrap();
        thread::sleep(Duration::from_millis(poll_rate));
        count = offset
            + counters
                .iter()
                .map(|c| c.load(Ordering::SeqCst))
                .sum::<usize>();
    }

    println!(
        "\r{:20} (100.00%) {} / {}",
        count,
        print_duration(start.elapsed(), 0..3),
        print_duration(start.elapsed(), 0..3)
    );
    stdout.flush().unwrap();
}