1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
//! A simple mutex.
//!
//! This mutex is more efficient than [`std::sync::Mutex`] and smaller than
//! [`parking_lot::Mutex`](https://docs.rs/parking_lot).
//!
//! The locking mechanism uses eventual fairness to ensure locking will be fair on average without
//! sacrificing performance. This is done by forcing a fair lock whenever a lock operation is
//! starved for longer than 0.5 milliseconds.
//!
//! Each instance of [`Mutex`] requires 2 words of storage in addition to inner data.
//!
//! # Examples
//!
//! ```
//! use simple_mutex::Mutex;
//! use std::sync::Arc;
//! use std::thread;
//!
//! let m = Arc::new(Mutex::new(0));
//! let mut threads = vec![];
//!
//! for _ in 0..10 {
//!     let m = m.clone();
//!     threads.push(thread::spawn(move || {
//!         *m.lock() += 1;
//!     }));
//! }
//!
//! for t in threads {
//!     t.join().unwrap();
//! }
//! assert_eq!(*m.lock(), 10);
//! ```

#![warn(missing_docs, missing_debug_implementations, rust_2018_idioms)]

use std::cell::UnsafeCell;
use std::fmt;
use std::ops::{Deref, DerefMut};
use std::sync::atomic::{self, AtomicUsize, Ordering};
use std::thread;
use std::time::{Duration, Instant};

use event_listener::Event;

/// A simple mutex.
pub struct Mutex<T> {
    /// Current state of the mutex.
    ///
    /// The least significant bit is set to 1 if the mutex is locked.
    /// The other bits hold the number of starved lock operations.
    state: AtomicUsize,

    /// Lock operations waiting for the mutex to be released.
    lock_ops: Event,

    /// The value inside the mutex.
    data: UnsafeCell<T>,
}

unsafe impl<T: Send> Send for Mutex<T> {}
unsafe impl<T: Send> Sync for Mutex<T> {}

impl<T> Mutex<T> {
    /// Creates a new mutex.
    ///
    /// # Examples
    ///
    /// ```
    /// use simple_mutex::Mutex;
    ///
    /// let mutex = Mutex::new(0);
    /// ```
    pub fn new(data: T) -> Mutex<T> {
        Mutex {
            state: AtomicUsize::new(0),
            lock_ops: Event::new(),
            data: UnsafeCell::new(data),
        }
    }

    /// Acquires the mutex.
    ///
    /// Returns a guard that releases the mutex when dropped.
    ///
    /// # Examples
    ///
    /// ```
    /// use simple_mutex::Mutex;
    ///
    /// let mutex = Mutex::new(10);
    /// let guard = mutex.lock();
    /// assert_eq!(*guard, 10);
    /// ```
    #[inline]
    pub fn lock(&self) -> MutexGuard<'_, T> {
        if let Some(guard) = self.try_lock() {
            return guard;
        }
        self.lock_slow()
    }

    /// Slow path for acquiring the mutex.
    #[cold]
    fn lock_slow(&self) -> MutexGuard<'_, T> {
        for step in 0..10 {
            // Try locking the mutex.
            if let Some(guard) = self.try_lock() {
                return guard;
            }

            // Back off when contending on the mutex.
            if step <= 3 {
                for _ in 0..1 << step {
                    atomic::spin_loop_hint();
                }
            } else {
                thread::yield_now();
            }
        }

        // Get the current time.
        let start = Instant::now();

        loop {
            // Start listening for events.
            let listener = self.lock_ops.listen();

            // Try locking if nobody is being starved.
            match self.state.compare_and_swap(0, 1, Ordering::Acquire) {
                // Lock acquired!
                0 => return MutexGuard(self),

                // Unlocked and somebody is starved - notify the first waiter in line.
                s if s % 2 == 0 => self.lock_ops.notify_one(),

                // The mutex is currently locked.
                _ => {}
            }

            // Wait for a notification.
            listener.wait();

            // Try locking if nobody is being starved.
            match self.state.compare_and_swap(0, 1, Ordering::Acquire) {
                // Lock acquired!
                0 => return MutexGuard(self),

                // Unlocked and somebody is starved - notify the first waiter in line.
                s if s % 2 == 0 => self.lock_ops.notify_one(),

                // The mutex is currently locked.
                _ => {}
            }

            // If waiting for too long, fall back to a fairer locking strategy that will prevent
            // newer lock operations from starving us forever.
            if start.elapsed() > Duration::from_micros(500) {
                break;
            }
        }

        // Increment the number of starved lock operations.
        self.state.fetch_add(2, Ordering::Release);

        // Decrement the counter when exiting this function.
        let _call = CallOnDrop(|| {
            self.state.fetch_sub(2, Ordering::Release);
        });

        loop {
            // Start listening for events.
            let listener = self.lock_ops.listen();

            // Try locking if nobody else is being starved.
            match self.state.compare_and_swap(2, 2 | 1, Ordering::Acquire) {
                // Lock acquired!
                0 => return MutexGuard(self),

                // Unlocked and somebody is starved - notify the first waiter in line.
                s if s % 2 == 0 => self.lock_ops.notify_one(),

                // The mutex is currently locked.
                _ => {}
            }

            // Wait for a notification.
            listener.wait();

            // Try acquiring the lock without waiting for others.
            if self.state.fetch_or(1, Ordering::Acquire) % 2 == 0 {
                return MutexGuard(self);
            }
        }
    }

    /// Attempts to acquire the mutex.
    ///
    /// If the mutex could not be acquired at this time, then [`None`] is returned. Otherwise, a
    /// guard is returned that releases the mutex when dropped.
    ///
    /// # Examples
    ///
    /// ```
    /// use simple_mutex::Mutex;
    ///
    /// let mutex = Mutex::new(10);
    /// if let Some(guard) = mutex.try_lock() {
    ///     assert_eq!(*guard, 10);
    /// }
    /// # ;
    /// ```
    #[inline]
    pub fn try_lock(&self) -> Option<MutexGuard<'_, T>> {
        if self.state.compare_and_swap(0, 1, Ordering::Acquire) == 0 {
            Some(MutexGuard(self))
        } else {
            None
        }
    }

    /// Consumes the mutex, returning the underlying data.
    ///
    /// # Examples
    ///
    /// ```
    /// use simple_mutex::Mutex;
    ///
    /// let mutex = Mutex::new(10);
    /// assert_eq!(mutex.into_inner(), 10);
    /// ```
    pub fn into_inner(self) -> T {
        self.data.into_inner()
    }

    /// Returns a mutable reference to the underlying data.
    ///
    /// Since this call borrows the mutex mutably, no actual locking takes place -- the mutable
    /// borrow statically guarantees the mutex is not already acquired.
    ///
    /// # Examples
    ///
    /// ```
    /// use simple_mutex::Mutex;
    ///
    /// let mut mutex = Mutex::new(0);
    /// *mutex.get_mut() = 10;
    /// assert_eq!(*mutex.lock(), 10);
    /// ```
    pub fn get_mut(&mut self) -> &mut T {
        unsafe { &mut *self.data.get() }
    }
}

impl<T: fmt::Debug> fmt::Debug for Mutex<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        struct Locked;
        impl fmt::Debug for Locked {
            fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
                f.write_str("<locked>")
            }
        }

        match self.try_lock() {
            None => f.debug_struct("Mutex").field("data", &Locked).finish(),
            Some(guard) => f.debug_struct("Mutex").field("data", &&*guard).finish(),
        }
    }
}

impl<T> From<T> for Mutex<T> {
    fn from(val: T) -> Mutex<T> {
        Mutex::new(val)
    }
}

impl<T: Default> Default for Mutex<T> {
    fn default() -> Mutex<T> {
        Mutex::new(Default::default())
    }
}

/// A guard that releases the mutex when dropped.
pub struct MutexGuard<'a, T>(&'a Mutex<T>);

unsafe impl<T: Send> Send for MutexGuard<'_, T> {}
unsafe impl<T: Sync> Sync for MutexGuard<'_, T> {}

impl<'a, T> MutexGuard<'a, T> {
    /// Returns a reference to the mutex a guard came from.
    ///
    /// # Examples
    ///
    /// ```
    /// use simple_mutex::{Mutex, MutexGuard};
    ///
    /// let mutex = Mutex::new(10i32);
    /// let guard = mutex.lock();
    /// dbg!(MutexGuard::source(&guard));
    /// ```
    pub fn source(guard: &MutexGuard<'a, T>) -> &'a Mutex<T> {
        guard.0
    }
}

impl<T> Drop for MutexGuard<'_, T> {
    fn drop(&mut self) {
        // Remove the last bit and notify a waiting lock operation.
        self.0.state.fetch_sub(1, Ordering::Release);
        self.0.lock_ops.notify_one();
    }
}

impl<T: fmt::Debug> fmt::Debug for MutexGuard<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Debug::fmt(&**self, f)
    }
}

impl<T: fmt::Display> fmt::Display for MutexGuard<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        (**self).fmt(f)
    }
}

impl<T> Deref for MutexGuard<'_, T> {
    type Target = T;

    fn deref(&self) -> &T {
        unsafe { &*self.0.data.get() }
    }
}

impl<T> DerefMut for MutexGuard<'_, T> {
    fn deref_mut(&mut self) -> &mut T {
        unsafe { &mut *self.0.data.get() }
    }
}

/// Calls a function when dropped.
struct CallOnDrop<F: Fn()>(F);

impl<F: Fn()> Drop for CallOnDrop<F> {
    fn drop(&mut self) {
        (self.0)();
    }
}