1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at http://mozilla.org/MPL/2.0/.

//! Kalman filters.

use num_traits::{Num, One, Zero};

use signalo_traits::filter::Filter;

use traits::{InitialState, Resettable, Stateful, StatefulUnsafe};

/// A Kalman filter's internal state.
#[derive(Clone, Debug)]
pub struct State<T> {
    /// Covariance (uncertainty)
    pub cov: T,
    /// Value estimation
    pub value: Option<T>,
}

/// A 1-dimensional Kalman filter.
#[derive(Clone, Debug)]
pub struct Kalman<T> {
    /// Process noise covariance
    r: T,
    /// Measurement noise covariance
    q: T,
    /// State transition
    a: T,
    /// Control transition
    b: T,
    /// Measurement
    c: T,
    /// internal state
    state: State<T>,
}

impl<T> Kalman<T>
where
    T: Zero,
{
    /// Creates a new `Kalman` filter with given `r`, `q`, `a`, `b`, and `c` coefficients.
    ///
    /// Coefficients:
    /// - `r`: Process noise covariance
    /// - `q`: Measurement noise covariance
    /// - `a`: State transition
    /// - `b`: Control transition
    /// - `c`: Measurement
    #[inline]
    pub fn new(r: T, q: T, a: T, b: T, c: T) -> Self {
        let state = Self::initial_state(());
        Kalman {
            r,
            q,
            a,
            b,
            c,
            state,
        }
    }
}

impl<T> Kalman<T>
where
    T: Copy + Num,
{
    fn process(&mut self, (input, control): (T, T)) -> T {
        let c_squared = self.c * self.c;
        let (value, cov) = match self.state.value {
            None => {
                let value = input / self.c;
                let cov = self.q / c_squared;
                (value, cov)
            }
            Some(mut value) => {
                // Compute prediction:
                let pred_state = (self.a * value) + (self.b * control);
                let pred_cov = (self.a * self.state.cov * self.a) + self.r;

                // Compute Kalman gain:
                let k = pred_cov * self.c / ((pred_cov * c_squared) + self.q);

                // Correction:
                let value = pred_state + k * (input - (self.c * pred_state));
                let cov = pred_cov - (k * self.c * pred_cov);
                (value, cov)
            }
        };
        self.state.value = Some(value);
        self.state.cov = cov;
        value
    }
}

impl<T> Default for Kalman<T>
where
    T: Zero + One,
{
    #[inline]
    fn default() -> Self {
        let r = T::one();
        let q = T::one();
        let a = T::one();
        let b = T::zero();
        let c = T::one();
        Kalman::new(r, q, a, b, c)
    }
}

impl<T> Stateful for Kalman<T> {
    type State = State<T>;
}

unsafe impl<T> StatefulUnsafe for Kalman<T> {
    unsafe fn state(&self) -> &Self::State {
        &self.state
    }

    unsafe fn state_mut(&mut self) -> &mut Self::State {
        &mut self.state
    }
}

impl<T> InitialState<()> for Kalman<T>
where
    T: Zero,
{
    fn initial_state(_: ()) -> Self::State {
        let cov = T::zero();
        let value = None;
        State { cov, value }
    }
}

impl<T> Resettable for Kalman<T>
where
    T: Zero,
{
    fn reset(&mut self) {
        self.state = Self::initial_state(());
    }
}

impl<T> Filter<T> for Kalman<T>
where
    T: Copy + Num,
{
    type Output = T;

    fn filter(&mut self, input: T) -> Self::Output {
        self.process((input, T::zero()))
    }
}

impl<T> Filter<(T, T)> for Kalman<T>
where
    T: Copy + Num,
{
    type Output = T;

    fn filter(&mut self, (input, control): (T, T)) -> Self::Output {
        self.process((input, control))
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    fn get_input() -> Vec<f32> {
        vec![
            0.0, 1.0, 7.0, 2.0, 5.0, 8.0, 16.0, 3.0, 19.0, 6.0, 14.0, 9.0, 9.0, 17.0, 17.0, 4.0,
            12.0, 20.0, 20.0, 7.0, 7.0, 15.0, 15.0, 10.0, 23.0, 10.0, 111.0, 18.0, 18.0, 18.0,
            106.0, 5.0, 26.0, 13.0, 13.0, 21.0, 21.0, 21.0, 34.0, 8.0, 109.0, 8.0, 29.0, 16.0,
            16.0, 16.0, 104.0, 11.0, 24.0, 24.0,
        ]
    }

    fn get_output() -> Vec<f32> {
        vec![
            0.000, 0.524, 3.012, 2.682, 3.375, 4.693, 7.837, 6.510, 9.912, 8.851, 10.245, 9.908,
            9.663, 11.646, 13.092, 10.636, 11.004, 13.435, 15.208, 12.991, 11.372, 12.352, 13.068,
            12.239, 15.146, 13.756, 40.027, 34.076, 29.733, 26.563, 48.024, 36.401, 33.591, 28.028,
            23.968, 23.166, 22.581, 22.154, 25.354, 20.666, 44.530, 34.661, 33.132, 28.503, 25.126,
            22.660, 44.635, 35.548, 32.428, 30.151,
        ]
    }

    #[test]
    fn test() {
        let r = 0.0001; // Process noise
        let q = 0.001; // Measurement noise
        let a = 1.0; // State
        let b = 0.0; // Control
        let c = 1.0; // Measurement
        let filter = Kalman::new(r, q, a, b, c);

        // Sequence: https://en.wikipedia.org/wiki/Collatz_conjecture
        let input = get_input();
        let output: Vec<_> = input
            .iter()
            .scan(filter, |filter, &input| Some(filter.filter(input)))
            .collect();

        assert_nearly_eq!(output, get_output(), 0.001);
    }
}