1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
#![doc(
    html_root_url = "https://docs.rs/signal-hook-registry/1.0.0/signal-hook-registry/",
    test(attr(deny(warnings)))
)]
#![deny(missing_docs)]

//! Backend of the [signal-hook] crate.
//!
//! The [signal-hook] crate tries to provide an API to the unix signals, which are a global
//! resource. Therefore, it is desirable an application contains just one version of the crate
//! which manages this global resource. But that makes it impossible to make breaking changes in
//! the API.
//!
//! Therefore, this crate provides very minimal and low level API to the signals that is unlikely
//! to have to change, while there may be multiple versions of the [signal-hook] that all use this
//! low-level API to provide different versions of the high level APIs.
//!
//! It is also possible some other crates might want to build a completely different API. This
//! split allows these crates to still reuse the same low-level routines in this crate instead of
//! going to the (much more dangerous) unix calls.
//!
//! # What this crate provides
//!
//! The only thing this crate does is multiplexing the signals. An application or library can add
//! or remove callbacks and have multiple callbacks for the same signal.
//!
//! It handles dispatching the callbacks and managing them in a way that uses only the
//! [async-signal-safe] functions inside the signal handler. Note that the callbacks are still run
//! inside the signal handler, so it is up to the caller to ensure they are also
//! [async-signal-safe].
//!
//! # What this is for
//!
//! This is a building block for other libraries creating reasonable abstractions on top of
//! signals. The [signal-hook] is the generally preferred way if you need to handle signals in your
//! application and provides several safe patterns of doing so.
//!
//! # Rust version compatibility
//!
//! Currently builds on 1.26.0 an newer and this is very unlikely to change. However, tests
//! require dependencies that don't build there, so tests need newer Rust version (they are run on
//! stable).
//!
//! [signal-hook]: https://docs.rs/signal-hook
//! [async-signal-safe]: http://www.man7.org/linux/man-pages/man7/signal-safety.7.html

extern crate arc_swap;
extern crate libc;

use std::collections::hash_map::Entry;
use std::collections::{BTreeMap, HashMap};
use std::io::Error;
use std::mem;
use std::ptr;
use std::sync::{Arc, Mutex, MutexGuard, Once, ONCE_INIT};

use arc_swap::IndependentArcSwap;
use libc::{c_int, c_void, sigaction, siginfo_t, sigset_t, SIG_BLOCK, SIG_SETMASK};

use libc::{SIGFPE, SIGILL, SIGKILL, SIGSEGV, SIGSTOP};

// # Internal workings
//
// This uses a form of RCU. There's an atomic pointer to the current action descriptors (in the
// form of IndependentArcSwap, to be able to track what, if any, signal handlers still use the
// version). A signal handler takes a copy of the pointer and calls all the relevant actions.
//
// Modifications to that are protected by a mutex, to avoid juggling multiple signal handlers at
// once (eg. not calling sigaction concurrently). This should not be a problem, because modifying
// the signal actions should be initialization only anyway. To avoid all allocations and also
// deallocations inside the signal handler, after replacing the pointer, the modification routine
// needs to busy-wait for the reference count on the old pointer to drop to 1 and take ownership ‒
// that way the one deallocating is the modification routine, outside of the signal handler.

#[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd, Hash)]
struct ActionId(u64);

/// An ID of registered action.
///
/// This is returned by all the registration routines and can be used to remove the action later on
/// with a call to [`unregister`](fn.unregister.html).
#[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd, Hash)]
pub struct SigId {
    signal: c_int,
    action: ActionId,
}

type Action = Fn(&siginfo_t) + Send + Sync;

#[derive(Clone)]
struct Slot {
    prev: sigaction,
    // We use BTreeMap here, because we want to run the actions in the order they were inserted.
    // This works, because the ActionIds are assigned in an increasing order.
    actions: BTreeMap<ActionId, Arc<Action>>,
}

impl Slot {
    fn new(signal: libc::c_int) -> Result<Self, Error> {
        // C data structure, expected to be zeroed out.
        let mut new: libc::sigaction = unsafe { mem::zeroed() };
        new.sa_sigaction = handler as usize;
        // Android is broken and uses different int types than the rest (and different depending on
        // the pointer width). This converts the flags to the proper type no matter what it is on
        // the given platform.
        let flags = libc::SA_RESTART | libc::SA_NOCLDSTOP;
        #[allow(unused_assignments)]
        let mut siginfo = flags;
        siginfo = libc::SA_SIGINFO as _;
        let flags = flags | siginfo;
        new.sa_flags = flags as _;
        // C data structure, expected to be zeroed out.
        let mut old: libc::sigaction = unsafe { mem::zeroed() };
        // FFI ‒ pointers are valid, it doesn't take ownership.
        if unsafe { libc::sigaction(signal, &new, &mut old) } != 0 {
            return Err(Error::last_os_error());
        }
        Ok(Slot {
            prev: old,
            actions: BTreeMap::new(),
        })
    }
}

type AllSignals = HashMap<c_int, Slot>;

struct GlobalData {
    all_signals: IndependentArcSwap<AllSignals>,
    rcu_lock: Mutex<u64>,
}

static mut GLOBAL_DATA: Option<GlobalData> = None;
static GLOBAL_INIT: Once = ONCE_INIT;

impl GlobalData {
    fn get() -> &'static Self {
        unsafe { GLOBAL_DATA.as_ref().unwrap() }
    }
    fn ensure() -> &'static Self {
        GLOBAL_INIT.call_once(|| unsafe {
            GLOBAL_DATA = Some(GlobalData {
                all_signals: IndependentArcSwap::from_pointee(HashMap::new()),
                rcu_lock: Mutex::new(0),
            });
        });
        Self::get()
    }
    fn load(&self) -> (AllSignals, MutexGuard<u64>) {
        let lock = self.rcu_lock.lock().unwrap();
        let signals = AllSignals::clone(&self.all_signals.load());
        (signals, lock)
    }
    fn store(&self, signals: AllSignals, lock: MutexGuard<u64>) {
        let signals = Arc::new(signals);
        // We are behind a mutex, so we can safely replace it without any RCU on the ArcSwap side.
        self.all_signals.store(signals);
        drop(lock);
    }
}

extern "C" fn handler(sig: c_int, info: *mut siginfo_t, data: *mut c_void) {
    let signals = GlobalData::get().all_signals.peek_signal_safe();

    if let Some(ref slot) = signals.get(&sig) {
        let fptr = slot.prev.sa_sigaction;
        if fptr != 0 && fptr != libc::SIG_DFL && fptr != libc::SIG_IGN {
            // FFI ‒ calling the original signal handler.
            unsafe {
                // Android is broken and uses different int types than the rest (and different
                // depending on the pointer width). This converts the flags to the proper type no
                // matter what it is on the given platform.
                //
                // The trick is to create the same-typed variable as the sa_flags first and then
                // set it to the proper value (does Rust have a way to copy a type in a different
                // way?)
                #[allow(unused_assignments)]
                let mut siginfo = slot.prev.sa_flags;
                siginfo = libc::SA_SIGINFO as _;
                if slot.prev.sa_flags & siginfo == 0 {
                    let action = mem::transmute::<usize, extern "C" fn(c_int)>(fptr);
                    action(sig);
                } else {
                    type SigAction = extern "C" fn(c_int, *mut siginfo_t, *mut c_void);
                    let action = mem::transmute::<usize, SigAction>(fptr);
                    action(sig, info, data);
                }
            }
        }

        let info = unsafe { info.as_ref().unwrap() };

        for action in slot.actions.values() {
            action(info);
        }
    }
}

fn block_signal(signal: c_int) -> Result<sigset_t, Error> {
    unsafe {
        let mut newsigs: sigset_t = mem::uninitialized();
        libc::sigemptyset(&mut newsigs);
        libc::sigaddset(&mut newsigs, signal);
        let mut oldsigs: sigset_t = mem::uninitialized();
        libc::sigemptyset(&mut oldsigs);
        if libc::sigprocmask(SIG_BLOCK, &newsigs, &mut oldsigs) == 0 {
            Ok(oldsigs)
        } else {
            Err(Error::last_os_error())
        }
    }
}

fn restore_signals(signals: libc::sigset_t) -> Result<(), Error> {
    if unsafe { libc::sigprocmask(SIG_SETMASK, &signals, ptr::null_mut()) } == 0 {
        Ok(())
    } else {
        Err(Error::last_os_error())
    }
}

fn without_signal<F: FnOnce() -> Result<(), Error>>(signal: c_int, f: F) -> Result<(), Error> {
    let old_signals = block_signal(signal)?;
    let result = f();
    let restored = restore_signals(old_signals);
    // In case of errors in both, prefer the one in result.
    result.and(restored)
}

/// List of forbidden signals.
///
/// Some signals are impossible to replace according to POSIX and some are so special that this
/// library refuses to handle them (eg. SIGSEGV). The routines panic in case registering one of
/// these signals is attempted.
///
/// See [`register`](fn.register.html).
pub const FORBIDDEN: &[c_int] = &[SIGKILL, SIGSTOP, SIGILL, SIGFPE, SIGSEGV];

/// Registers an arbitrary action for the given signal.
///
/// This makes sure there's a signal handler for the given signal. It then adds the action to the
/// ones called each time the signal is delivered. If multiple actions are set for the same signal,
/// all are called, in the order of registration.
///
/// If there was a previous signal handler for the given signal, it is chained ‒ it will be called
/// as part of this library's signal handler, before any actions set through this function.
///
/// On success, the function returns an ID that can be used to remove the action again with
/// [`unregister`](fn.unregister.html).
///
/// # Panics
///
/// If the signal is one of (see [`FORBIDDEN`]):
///
/// * `SIGKILL`
/// * `SIGSTOP`
/// * `SIGILL`
/// * `SIGFPE`
/// * `SIGSEGV`
///
/// The first two are not possible to override (and the underlying C functions simply ignore all
/// requests to do so, which smells of possible bugs, or return errors). The rest can be set, but
/// generally needs very special handling to do so correctly (direct manipulation of the
/// application's address space, `longjmp` and similar). Unless you know very well what you're
/// doing, you'll shoot yourself into the foot and this library won't help you with that.
///
/// # Errors
///
/// Since the library manipulates signals using the low-level C functions, all these can return
/// errors. Generally, the errors mean something like the specified signal does not exist on the
/// given platform ‒ ofter a program is debugged and tested on a given OS, it should never return
/// an error.
///
/// However, if an error *is* returned, there are no guarantees if the given action was registered
/// or not.
///
/// # Unsafety
///
/// This function is unsafe, because the `action` is run inside a signal handler. The set of
/// functions allowed to be called from within is very limited (they are called signal-safe
/// functions by POSIX). These specifically do *not* contain mutexes and memory
/// allocation/deallocation. They *do* contain routines to terminate the program, to further
/// manipulate signals (by the low-level functions, not by this library) and to read and write file
/// descriptors. Calling program's own functions consisting only of these is OK, as is manipulating
/// program's variables ‒ however, as the action can be called on any thread that does not have the
/// given signal masked (by default no signal is masked on any thread), and mutexes are a no-go,
/// this is harder than it looks like at first.
///
/// As panicking from within a signal handler would be a panic across FFI boundary (which is
/// undefined behavior), the passed handler must not panic.
///
/// If you find these limitations hard to satisfy, choose from the helper functions in submodules
/// of this library ‒ these provide safe interface to use some common signal handling patters.
///
/// # Race condition
///
/// Currently, there's a short race condition. If this is the first action for the given signal,
/// there was another signal handler previously and the signal comes into a different thread during
/// this function, it can happen the original handler is not chained in this one instance.
///
/// This is considered unimportant problem, since most programs install their signal handlers
/// during startup, before the signals effectively do anything. If you want to avoid the race
/// condition completely, initialize all signal handling before starting any threads.
///
/// # Performance
///
/// Even when it is possible to repeatedly install and remove actions during the lifetime of a
/// program, the installation and removal is considered a slow operation and should not be done
/// very often. Also, there's limited (though huge) amount of distinct IDs (they are `u64`).
///
/// # Examples
///
/// ```rust
/// extern crate signal_hook;
///
/// use std::io::Error;
/// use std::process;
///
/// fn main() -> Result<(), Error> {
///     let signal = unsafe { signal_hook::register(signal_hook::SIGTERM, || process::abort()) }?;
///     // Stuff here...
///     signal_hook::unregister(signal); // Not really necessary.
///     Ok(())
/// }
/// ```
pub unsafe fn register<F>(signal: c_int, action: F) -> Result<SigId, Error>
where
    F: Fn() + Sync + Send + 'static,
{
    register_sigaction(signal, move |_: &_| action())
}

/// Register a signal action.
///
/// This acts in the same way as [`register`], including the drawbacks, panics and performance
/// characteristics. The only difference is the provided action accepts a [`siginfo_t`] argument,
/// providing information about the received signal.
pub unsafe fn register_sigaction<F>(signal: c_int, action: F) -> Result<SigId, Error>
where
    F: Fn(&siginfo_t) + Sync + Send + 'static,
{
    assert!(
        !FORBIDDEN.contains(&signal),
        "Attempted to register forbidden signal {}",
        signal,
    );
    register_unchecked(signal, action)
}

/// Register a signal action without checking for forbidden signals.
///
/// This acts the same way as [`register_sigaction`], but without checking for the [`FORBIDDEN`]
/// signals. All the signal passed are registered and it is up to the caller to make some sense of
/// them.
///
/// Note that you really need to know what you're doing if you change eg. the `SIGSEGV` signal
/// handler. Generally, you don't want to do that. But unlike the other functions here, this
/// function still allows you to do it.
pub unsafe fn register_unchecked<F>(signal: c_int, action: F) -> Result<SigId, Error>
where
    F: Fn(&siginfo_t) + Sync + Send + 'static,
{
    let globals = GlobalData::ensure();
    let (mut signals, mut lock) = globals.load();
    let id = ActionId(*lock);
    *lock += 1;
    let action = Arc::from(action);
    without_signal(signal, || {
        match signals.entry(signal) {
            Entry::Occupied(mut occupied) => {
                assert!(occupied.get_mut().actions.insert(id, action).is_none());
            }
            Entry::Vacant(place) => {
                let mut slot = Slot::new(signal)?;
                slot.actions.insert(id, action);
                place.insert(slot);
            }
        }

        globals.store(signals, lock);

        Ok(())
    })?;

    Ok(SigId { signal, action: id })
}

/// Removes a previously installed action.
///
/// This function does nothing if the action was already removed. It returns true if it was removed
/// and false if the action wasn't found.
///
/// It can unregister all the actions installed by [`register`](fn.register.html) as well as the
/// ones from helper submodules.
///
/// # Warning
///
/// This does *not* currently return the default/previous signal handler if the last action for a
/// signal was just unregistered. That means that if you replaced for example `SIGTERM` and then
/// removed the action, the program will effectively ignore `SIGTERM` signals from now on, not
/// terminate on them as is the default action. This is OK if you remove it as part of a shutdown,
/// but it is not recommended to remove termination actions during the normal runtime of
/// application (unless the desired effect is to create something that can be terminated only by
/// SIGKILL).
pub fn unregister(id: SigId) -> bool {
    let globals = GlobalData::ensure();
    let (mut signals, lock) = globals.load();
    let mut replace = false;
    if let Some(slot) = signals.get_mut(&id.signal) {
        replace = slot.actions.remove(&id.action).is_some();
    }
    if replace {
        globals.store(signals, lock);
    }
    replace
}

#[cfg(test)]
mod tests {
    use std::sync::atomic::{AtomicUsize, Ordering};
    use std::sync::Arc;
    use std::thread;
    use std::time::Duration;

    use libc::{pid_t, SIGUSR1, SIGUSR2};

    use super::*;

    #[test]
    #[should_panic]
    fn panic_forbidden() {
        let _ = unsafe { register(SIGKILL, || ()) };
    }

    /// Registering the forbidden signals is allowed in the _unchecked version.
    #[test]
    fn forbidden_raw() {
        unsafe { register_unchecked(SIGFPE, |_| std::process::abort()).unwrap() };
    }

    #[test]
    fn signal_with_pid() {
        let status = Arc::new(AtomicUsize::new(0));
        let action = {
            let status = Arc::clone(&status);
            move |siginfo: &siginfo_t| {
                // Hack: currently, libc exposes only the first 3 fields of siginfo_t. The pid
                // comes somewhat later on. Therefore, we do a Really Ugly Hack and define our
                // own structure (and hope it is correct on all platforms). But hey, this is
                // only the tests, so we are going to get away with this.
                #[repr(C)]
                struct SigInfo {
                    _fields: [c_int; 3],
                    #[cfg(all(target_pointer_width = "64", target_os = "linux"))]
                    _pad: c_int,
                    pid: pid_t,
                }
                let s: &SigInfo = unsafe {
                    (siginfo as *const _ as usize as *const SigInfo)
                        .as_ref()
                        .unwrap()
                };
                status.store(s.pid as usize, Ordering::Relaxed);
            }
        };
        let pid;
        unsafe {
            pid = libc::getpid();
            register_sigaction(SIGUSR2, action).unwrap();
            libc::kill(pid, SIGUSR2);
        }
        for _ in 0..10 {
            thread::sleep(Duration::from_millis(100));
            let current = status.load(Ordering::Relaxed);
            match current {
                // Not yet (PID == 0 doesn't happen)
                0 => continue,
                // Good, we are done with the correct result
                _ if current == pid as usize => return,
                _ => panic!("Wrong status value {}", current),
            }
        }
        panic!("Timed out waiting for the signal");
    }

    /// Check that registration works as expected and that unregister tells if it did or not.
    #[test]
    fn register_unregister() {
        let signal = unsafe { register(SIGUSR1, || ()).unwrap() };
        // It was there now, so we can unregister
        assert!(unregister(signal));
        // The next time unregistering does nothing and tells us so.
        assert!(!unregister(signal));
    }
}