1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
//! A lock-free concurrent slab.
//!
//! Slabs provide pre-allocated storage for many instances of a single data
//! type. When a large number of values of a single type are required,
//! this can be more efficient than allocating each item individually. Since the
//! allocated items are the same size, memory fragmentation is reduced, and
//! creating and removing new items can be very cheap.
//!
//! This crate implements a lock-free concurrent slab, indexed by `usize`s.
//!
//! # Examples
//!
//! Inserting an item into the slab, returning an index:
//! ```rust
//! # use sharded_slab::Slab;
//! let slab = Slab::new();
//!
//! let key = slab.insert("hello world").unwrap();
//! assert_eq!(slab.get(key), Some(&"hello world"));
//! ```
//!
//! To share a slab across threads, it may be wrapped in an `Arc`:
//! ```rust
//! # use sharded_slab::Slab;
//! use std::sync::Arc;
//! let slab = Arc::new(Slab::new());
//!
//! let slab2 = slab.clone();
//! let thread2 = std::thread::spawn(move || {
//!     let key = slab2.insert("hello from thread two").unwrap();
//!     assert_eq!(slab2.get(key), Some(&"hello from thread two"));
//!     key
//! });
//!
//! let key1 = slab.insert("hello from thread one").unwrap();
//! assert_eq!(slab.get(key1), Some(&"hello from thread one"));
//!
//! // Wait for thread 2 to complete.
//! let key2 = thread2.join().unwrap();
//!
//! // The item inserted by thread 2 remains in the slab.
//! assert_eq!(slab.get(key2), Some(&"hello from thread two"));
//!```
//!
//! If items in the slab must be mutated, a `Mutex` or `RwLock` may be used for
//! each item, providing granular locking of items rather than of the slab:
//!
//! ```rust
//! # use sharded_slab::Slab;
//! use std::sync::{Arc, Mutex};
//! let slab = Arc::new(Slab::new());
//!
//! let key = slab.insert(Mutex::new(String::from("hello world"))).unwrap();
//!
//! let slab2 = slab.clone();
//! let thread2 = std::thread::spawn(move || {
//!     let mut hello = slab2.get(key).unwrap().lock().unwrap();
//!     *hello = String::from("hello everyone!");
//! });
//!
//! thread2.join().unwrap();
//!
//! let hello = slab.get(key).unwrap().lock().unwrap();
//! assert_eq!(hello.as_str(), "hello everyone!");
//! ```
//!
//! # Configuration
//!
//! For performance reasons, several values used by the slab are calculated as
//! constants. In order to allow users to tune the slab's parameters, we provide
//! a [`Config`] trait which defines these parameters as associated `consts`.
//! The `Slab` type is generic over a `C: Config` parameter.
//!
//! [`Config`]: trait.Config.html
//!
//! # Comparison with Similar Crates
//!
//! - [`slab`]: Carl Lerche's `slab` crate provides a slab implementation with a
//!   similar API, implemented by storing all data in a single vector.
//!
//!   Unlike `sharded_slab`, inserting and removing elements from the slab
//!   requires  mutable access. This means that if the slab is accessed
//!   concurrently by multiple threads, it is necessary for it to be protected
//!   by a `Mutex` or `RwLock`. Items may not be inserted or removed (or
//!   accessed, if a `Mutex` is used) concurrently, even when they are
//!   unrelated. In many cases, the lock can become a significant bottleneck. On
//!   the other hand, this crate allows separate indices in the slab to be
//!   accessed, inserted, and removed concurrently without requiring a global
//!   lock. Therefore, when the slab is shared across multiple threads, this
//!   crate offers significantly better performance than `slab`.
//!
//!   However, the lock free slab introduces some additional constant-factor
//!   overhead. This means that in use-cases where a slab is _not_ shared by
//!   multiple threads and locking is not required, this crate will likely offer
//!   slightly worse performance.
//!
//!   In summary: `sharded-slab` offers significantly improved performance in
//!   concurrent use-cases, while `slab` should be preferred in single-threaded
//!   use-cases.
//!
//! [`slab`]: https://crates.io/crates/loom
//!
//! # Safety and Correctness
//!
//! Most implementations of lock-free data structures in Rust require some
//! amount of unsafe code, and this crate is not an exception. In order to catch
//! potential bugs in this unsafe code, we make use of [`loom`], a
//! permutation-testing tool for concurrent Rust programs. All `unsafe` blocks
//! this crate occur in accesses to `loom` `CausalCell`s. This means that when
//! those accesses occur in this crate's tests, `loom` will assert that they are
//! valid under the C11 memory model across multiple permutations of concurrent
//! executions of those tests.
//!
//! In order to guard against the [ABA problem][aba], this crate makes use of
//! _generational indices_. Each slot in the slab tracks a generation counter
//! which is incremented every time a value is inserted into that slot, and the
//! indices returned by [`Slab::insert`] include the generation of the slot when
//! the value was inserted, packed into the high-order bits of the index. This
//! ensures that if a value is inserted, removed,  and a new value is inserted
//! into the same slot in the slab, the key returned by the first call to
//! `insert` will not map to the new value.
//!
//! Since a fixed number of bits are set aside to use for storing the generation
//! counter, the counter will wrap  around after being incremented a number of
//! times. To avoid situations where a returned index lives long enough to see the
//! generation counter wrap around to the same value, it is good to be fairly
//! generous when configuring the allocation of index bits.
//!
//! [`loom`]: https://crates.io/crates/loom
//! [aba]: https://en.wikipedia.org/wiki/ABA_problem
//! [`Slab::insert`]: struct.Slab.html#method.insert
//!
//! # Performance
//!
//! These graphs were produced by [benchmarks] of the sharded slab implementation,
//! using the [`criterion`] crate.
//!
//! The first shows the results of a benchmark where an increasing number of
//! items are inserted and then removed into a slab concurrently by five
//! threads. It compares the performance of the sharded slab implementation
//! with a `RwLock<slab::Slab>`:
//!
//! <img width="1124" alt="Screen Shot 2019-10-01 at 5 09 49 PM" src="https://user-images.githubusercontent.com/2796466/66078398-cd6c9f80-e516-11e9-9923-0ed6292e8498.png">
//!
//! The second graph shows the results of a benchmark where an increasing
//! number of items are inserted and then removed by a _single_ thread. It
//! compares the performance of the sharded slab implementation with an
//! `RwLock<slab::Slab>` and a `mut slab::Slab`.
//!
//! <img width="925" alt="Screen Shot 2019-10-01 at 5 13 45 PM" src="https://user-images.githubusercontent.com/2796466/66078469-f0974f00-e516-11e9-95b5-f65f0aa7e494.png">
//!
//! These benchmarks demonstrate that, while the sharded approach introduces
//! a small constant-factor overhead, it offers significantly better
//! performance across concurrent accesses.
//!
//! [benchmarks]: https://github.com/hawkw/sharded-slab/blob/master/benches/bench.rs
//! [`criterion`]: https://crates.io/crates/criterion
//!
//! # Implementation Notes
//!
//! See [this page](implementation/index.html) for details on this crate's design
//! and implementation.
//!
#![doc(html_root_url = "https://docs.rs/sharded-slab/0.0.2")]

#[cfg(test)]
macro_rules! thread_local {
    ($($tts:tt)+) => { loom::thread_local!{ $($tts)+ } }
}

#[cfg(not(test))]
macro_rules! thread_local {
    ($($tts:tt)+) => { std::thread_local!{ $($tts)+ } }
}

pub mod implementation;
mod page;
pub(crate) mod sync;
mod tid;
pub(crate) use tid::Tid;
pub(crate) mod cfg;
mod iter;
use cfg::CfgPrivate;
pub use cfg::{Config, DefaultConfig};

use self::sync::{
    atomic::{AtomicUsize, Ordering},
    CausalCell,
};
use page::Page;
use std::{fmt, marker::PhantomData};

/// A sharded slab.
///
/// See the [crate-level documentation](index.html) for details on using this type.
pub struct Slab<T, C: cfg::Config = DefaultConfig> {
    shards: Box<[CausalCell<Shard<T, C>>]>,
    _cfg: PhantomData<C>,
}

struct Shard<T, C: cfg::Config> {
    #[cfg(debug_assertions)]
    tid: usize,
    sz: usize,
    len: AtomicUsize,
    // ┌─────────────┐      ┌────────┐
    // │ page 1      │      │        │
    // ├─────────────┤ ┌───▶│  next──┼─┐
    // │ page 2      │ │    ├────────┤ │
    // │             │ │    │XXXXXXXX│ │
    // │ local_free──┼─┘    ├────────┤ │
    // │ global_free─┼─┐    │        │◀┘
    // ├─────────────┤ └───▶│  next──┼─┐
    // │   page 3    │      ├────────┤ │
    // └─────────────┘      │XXXXXXXX│ │
    //       ...            ├────────┤ │
    // ┌─────────────┐      │XXXXXXXX│ │
    // │ page n      │      ├────────┤ │
    // └─────────────┘      │        │◀┘
    //                      │  next──┼───▶
    //                      ├────────┤
    //                      │XXXXXXXX│
    //                      └────────┘
    //                         ...
    pages: Vec<Page<T, C>>,
}

impl<T> Slab<T> {
    /// Returns a new slab with the default configuration parameters.
    pub fn new() -> Self {
        Self::new_with_config()
    }

    /// Returns a new slab with the provided configuration parameters.
    pub fn new_with_config<C: cfg::Config>() -> Slab<T, C> {
        C::validate();
        let mut shards = Vec::with_capacity(C::MAX_SHARDS);

        #[allow(unused_mut)]
        let mut idx = 0;
        shards.resize_with(C::MAX_SHARDS, || {
            let shard = Shard::new(idx);

            #[cfg(debug_assertions)]
            {
                idx += 1;
            }

            CausalCell::new(shard)
        });
        Slab {
            shards: shards.into_boxed_slice(),
            _cfg: PhantomData,
        }
    }
}

impl<T, C: cfg::Config> Slab<T, C> {
    /// The number of bits in each index which are used by the slab.
    ///
    /// If other data is packed into the `usize` indices returned by
    /// [`Slab::insert`], user code is free to use any bits higher than the
    /// `USED_BITS`-th bit freely.
    ///
    /// This is determined by the [`Config`] type that configures the slab's
    /// parameters. By default, all bits are used; this can be changed by
    /// overriding the [`Config::RESERVED_BITS`][res] constant.
    ///
    /// [`Config`]: trait.Config.html
    /// [res]: trait.Config.html#associatedconstant.RESERVED_BITS
    /// [`Slab::insert`]: struct.Slab.html#method.insert
    pub const USED_BITS: usize = C::USED_BITS;

    /// Inserts a value into the slab, returning a key that can be used to
    /// access it.
    ///
    /// If this function returns `None`, then the shard for the current thread
    /// is full and no items can be added until some are removed, or the maximum
    /// number of shards has been reached.
    ///
    /// # Examples
    /// ```rust
    /// # use sharded_slab::Slab;
    /// let slab = Slab::new();
    ///
    /// let key = slab.insert("hello world").unwrap();
    /// assert_eq!(slab.get(key), Some(&"hello world"));
    /// ```
    pub fn insert(&self, value: T) -> Option<usize> {
        let tid = Tid::<C>::current();
        #[cfg(test)]
        println!("insert {:?}", tid);
        self.shards[tid.as_usize()]
            .with_mut(|shard| unsafe {
                // we are guaranteed to only mutate the shard while on its thread.
                (*shard).insert(value)
            })
            .map(|idx| tid.pack(idx))
    }

    /// Removes the value associated with the given key from the slab, returning
    /// it.
    ///
    /// If the slab does not contain a value for that key, `None` is returned
    /// instead.
    pub fn remove(&self, idx: usize) -> Option<T> {
        let tid = C::unpack_tid(idx);
        #[cfg(test)]
        println!("rm {:?}", tid);
        if tid.is_current() {
            self.shards[tid.as_usize()].with_mut(|shard| unsafe {
                // only called if this is the current shard
                (*shard).remove_local(idx)
            })
        } else {
            self.shards[tid.as_usize()].with(|shard| unsafe { (*shard).remove_remote(idx) })
        }
    }

    /// Return a reference to the value associated with the given key.
    ///
    /// If the slab does not contain a value for the given key, `None` is
    /// returned instead.
    ///
    /// # Examples
    ///
    /// ```
    /// let slab = sharded_slab::Slab::new();
    /// let key = slab.insert("hello world").unwrap();
    ///
    /// assert_eq!(slab.get(key), Some(&"hello world"));
    /// assert_eq!(slab.get(12345), None);
    /// ```
    pub fn get(&self, key: usize) -> Option<&T> {
        let tid = C::unpack_tid(key);
        #[cfg(test)]
        println!("get {:?}", tid);
        self.shards
            .get(tid.as_usize())?
            .with(|shard| unsafe { (*shard).get(key) })
    }

    /// Returns `true` if the slab contains a value for the given key.
    ///
    /// # Examples
    ///
    /// ```
    /// let slab = sharded_slab::Slab::new();
    ///
    /// let key = slab.insert("hello world").unwrap();
    /// assert!(slab.contains(key));
    ///
    /// slab.remove(key).unwrap();
    /// assert!(!slab.contains(key));
    /// ```
    pub fn contains(&self, key: usize) -> bool {
        self.get(key).is_some()
    }

    /// Returns the number of items currently stored in the slab.
    pub fn len(&self) -> usize {
        self.shards
            .iter()
            .map(|shard| shard.with(|shard| unsafe { (*shard).len() }))
            .sum()
    }

    /// Returns the current number of items which may be stored in the slab
    /// without allocating.
    pub fn capacity(&self) -> usize {
        self.total_capacity() - self.len()
    }

    /// Returns an iterator over all the items in the slab.
    pub fn unique_iter<'a>(&'a mut self) -> iter::UniqueIter<'a, T, C> {
        let mut shards = self.shards.iter_mut();
        let shard = shards.next().expect("must be at least 1 shard");
        let mut pages = shard.with(|shard| unsafe { (*shard).iter() });
        let slots = pages.next().expect("must be at least 1 page").iter();
        iter::UniqueIter {
            shards,
            slots,
            pages,
        }
    }

    fn total_capacity(&self) -> usize {
        self.shards
            .iter()
            .map(|shard| shard.with(|shard| unsafe { (*shard).total_capacity() }))
            .sum()
    }
}

impl<T, C: cfg::Config> Shard<T, C> {
    fn new(_idx: usize) -> Self {
        Self {
            #[cfg(debug_assertions)]
            tid: _idx,
            sz: C::INITIAL_SZ,
            len: AtomicUsize::new(0),
            pages: vec![Page::new(C::INITIAL_SZ, 0)],
        }
    }

    fn insert(&mut self, value: T) -> Option<usize> {
        #[cfg(debug_assertions)]
        debug_assert_eq!(Tid::<C>::current().as_usize(), self.tid);

        let mut value = Some(value);

        // Can we fit the value into an existing page?
        for page in self.pages.iter_mut() {
            if let Some(poff) = page.insert(&mut value) {
                self.len.fetch_add(1, Ordering::Relaxed);
                return Some(poff);
            }
        }

        // If not, can we allocate a new page?
        let pidx = self.pages.len();
        if pidx >= C::MAX_PAGES {
            #[cfg(test)]
            println!("max pages (len={}, max={})", self.pages.len(), C::MAX_PAGES);
            // out of pages!
            return None;
        }

        // Add new page
        let sz = C::page_size(pidx);
        let mut page = Page::new(sz, self.sz);
        // Increment the total size of the shard, for the next time a new page
        // allocated.
        self.sz += sz;
        let poff = page.insert(&mut value).expect("new page should be empty");
        self.len.fetch_add(1, Ordering::Relaxed);
        self.pages.push(page);

        Some(poff)
    }

    #[inline]
    fn get(&self, idx: usize) -> Option<&T> {
        #[cfg(debug_assertions)]
        debug_assert_eq!(Tid::<C>::from_packed(idx).as_usize(), self.tid);
        let addr = C::unpack_addr(idx);
        let i = addr.index();
        #[cfg(test)]
        println!("-> {:?}; idx {:?}", addr, i);
        self.pages.get(i)?.get(addr, idx)
    }

    /// Remove an item on the shard's local thread.
    fn remove_local(&mut self, idx: usize) -> Option<T> {
        #[cfg(debug_assertions)]
        {
            debug_assert_eq!(Tid::<C>::current().as_usize(), self.tid);
            debug_assert_eq!(Tid::<C>::from_packed(idx).as_usize(), self.tid);
        }
        let addr = C::unpack_addr(idx);

        #[cfg(test)]
        println!("-> remove_local {:?}", addr);
        self.pages
            .get_mut(addr.index())?
            .remove_local(addr, C::unpack_gen(idx))
            .map(|item| {
                self.len.fetch_sub(1, Ordering::Relaxed);
                item
            })
    }

    /// Remove an item, while on a different thread from the shard's local thread.
    fn remove_remote(&self, idx: usize) -> Option<T> {
        #[cfg(debug_assertions)]
        {
            debug_assert_eq!(Tid::<C>::from_packed(idx).as_usize(), self.tid);
            debug_assert!(Tid::<C>::current().as_usize() != self.tid);
        }
        let addr = C::unpack_addr(idx);

        #[cfg(test)]
        println!("-> remove_remote {:?}", addr);
        self.pages
            .get(addr.index())?
            .remove_remote(addr, C::unpack_gen(idx))
            .map(|item| {
                self.len.fetch_sub(1, Ordering::Relaxed);
                item
            })
    }

    fn len(&self) -> usize {
        self.len.load(Ordering::Relaxed)
    }

    fn total_capacity(&self) -> usize {
        self.iter().map(Page::total_capacity).sum()
    }

    fn iter<'a>(&'a self) -> std::slice::Iter<'a, Page<T, C>> {
        self.pages.iter()
    }
}

impl<T: fmt::Debug, C: cfg::Config> fmt::Debug for Slab<T, C> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("Slab")
            // .field("shards", &self.shards)
            .field("Config", &C::debug())
            .finish()
    }
}

unsafe impl<T: Send, C: cfg::Config> Send for Slab<T, C> {}
unsafe impl<T: Sync, C: cfg::Config> Sync for Slab<T, C> {}

impl<T: fmt::Debug, C: cfg::Config> fmt::Debug for Shard<T, C> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let mut d = f.debug_struct("Shard");

        #[cfg(debug_assertions)]
        d.field("tid", &self.tid);

        d.field("len", &self.len())
            .field("sz", &self.sz)
            .field("pages", &self.pages)
            .finish()
    }
}

pub(crate) trait Pack<C: cfg::Config>: Sized {
    const LEN: usize;

    const BITS: usize;
    const SHIFT: usize = Self::Prev::SHIFT + Self::Prev::LEN;
    const MASK: usize = Self::BITS << Self::SHIFT;

    type Prev: Pack<C>;

    fn as_usize(&self) -> usize;
    fn from_usize(val: usize) -> Self;

    #[inline(always)]
    fn pack(&self, to: usize) -> usize {
        let value = self.as_usize();
        debug_assert!(value <= Self::BITS);

        (to & !Self::MASK) | (value << Self::SHIFT)
    }

    #[inline(always)]
    fn from_packed(from: usize) -> Self {
        let value = (from & Self::MASK) >> Self::SHIFT;
        debug_assert!(value <= Self::BITS);
        Self::from_usize(value)
    }
}

impl<C: cfg::Config> Pack<C> for () {
    const BITS: usize = 0;
    const LEN: usize = 0;
    const SHIFT: usize = 0;
    const MASK: usize = 0;

    type Prev = ();

    fn as_usize(&self) -> usize {
        unreachable!()
    }
    fn from_usize(_val: usize) -> Self {
        unreachable!()
    }

    fn pack(&self, _to: usize) -> usize {
        unreachable!()
    }

    fn from_packed(_from: usize) -> Self {
        unreachable!()
    }
}

#[cfg(test)]
mod tests;