1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
//! An implementation of the SHA-3 cryptographic hash algorithms.
//!
//! There are 6 standard algorithms specified in the SHA-3 standard:
//!
//! * `SHA3-224`
//! * `SHA3-256`
//! * `SHA3-384`
//! * `SHA3-512`
//! * `SHAKE128`, an extendable output function (XOF)
//! * `SHAKE256`, an extendable output function (XOF)
//! * `Keccak224`, `Keccak256`, `Keccak384`, `Keccak512` (NIST submission
//!    without padding changes)
//!
//! # Usage
//!
//! An example of using `SHA3-256` is:
//!
//! ```rust
//! use sha3::{Digest, Sha3_256};
//!
//! // create a SHA3-256 object
//! let mut hasher = Sha3_256::new();
//!
//! // write input message
//! hasher.input(b"abc");
//!
//! // read hash digest
//! let out = hasher.result();
//!
//! assert_eq!(out[..], [0x3a, 0x98, 0x5d, 0xa7, 0x4f, 0xe2, 0x25, 0xb2,
//!                      0x04, 0x5c, 0x17, 0x2d, 0x6b, 0xd3, 0x90, 0xbd,
//!                      0x85, 0x5f, 0x08, 0x6e, 0x3e, 0x9d, 0x52, 0x5b,
//!                      0x46, 0xbf, 0xe2, 0x45, 0x11, 0x43, 0x15, 0x32]);
//! ```

#![no_std]
extern crate byte_tools;
extern crate digest;
extern crate generic_array;

pub use digest::Digest;
use generic_array::{GenericArray, ArrayLength};
use generic_array::typenum::{Unsigned, U0, U2, U4, U28, U32,
                             U48, U64, U72, U104, U136, U144, U168, U200};
use core::cmp;
use core::marker::PhantomData;

mod keccak;

/// Generic SHA-3 hasher. Type arguments meaning:
/// N -- digest len, K -- rate and block size, M -- padding property
#[derive(Copy, Clone)]
pub struct Sha3<N: ArrayLength<u8>, K: ArrayLength<u8>, M: ArrayLength<u8>> {
    state: GenericArray<u8, U200>, // B bytes
    // Enqueued bytes in state for absorb phase
    //Squeeze offset for squeeze phase
    offset: usize,
    digest_length: PhantomData<N>,
    rate: PhantomData<K>,
    ds_len: PhantomData<M>, // 0 for keccak, 2 for shake, 4 for sha3
}

pub type Keccak224 = Sha3<U28, U144, U0>;
pub type Keccak256 = Sha3<U32, U136, U0>;
pub type Keccak384 = Sha3<U48, U104, U0>;
pub type Keccak512 = Sha3<U64, U72, U0>;

#[allow(non_camel_case_types)]
pub type Sha3_224 = Sha3<U28, U144, U2>;
#[allow(non_camel_case_types)]
pub type Sha3_256 = Sha3<U32, U136, U2>;
#[allow(non_camel_case_types)]
pub type Sha3_384 = Sha3<U48, U104, U2>;
#[allow(non_camel_case_types)]
pub type Sha3_512 = Sha3<U64, U72, U2>;

pub type Shake128<N> = Sha3<N, U168, U4>;
pub type Shake256<N> = Sha3<N, U136, U4>;

impl<N, K, M> Sha3<N, K, M>
    where N: ArrayLength<u8>, K: ArrayLength<u8>, M: ArrayLength<u8> {

    pub fn new() -> Sha3<N, K, M> {
        Sha3 {
            state: GenericArray::default(),
            offset: 0,

            digest_length: Default::default(),
            rate: Default::default(),
            ds_len: Default::default(),
        }
    }

    fn finalize(&mut self) {
        let ds_len = M::to_usize();

        // All parameters are expected to be in bits.
        fn pad_len(ds_len: usize, offset: usize, rate: usize) -> usize {
            assert!(rate % 8 == 0 && offset % 8 == 0);
            let r: i64 = rate as i64;
            let m: i64 = (offset + ds_len) as i64;
            let zeros = (((-m - 2) + 2 * r) % r) as usize;
            assert!((m as usize + zeros + 2) % 8 == 0);
            (ds_len as usize + zeros + 2) / 8
        }

        fn set_pad(offset: usize, buf: &mut [u8]) {
            //assert!(buf.len() as f32 >= ((offset + 2) as f32 / 8.0).ceil());
            let s = offset / 8;
            let buflen = buf.len();
            buf[s] |= 1 << (offset % 8);
            for i in (offset % 8) + 1..8 {
                buf[s] &= !(1 << i);
            }
            for v in buf.iter_mut().skip(s + 1) {
                *v = 0;
            }
            buf[buflen - 1] |= 0x80;
        }

        let p_len = pad_len(ds_len, self.offset * 8, self.rate() * 8);

        // TODO: check correctness
        const BUF_LEN: usize = 1 << 8;
        assert!(p_len < BUF_LEN);
        let mut buf = [0; BUF_LEN];
        let mut buf = &mut buf[..p_len];

        // Setting domain separator
        if ds_len == 2 {
            // 01...
            buf[0] &= 0xfe;
            buf[0] |= 0x2;
        } else if ds_len == 4 {
            // 1111...
            buf[0] |= 0xf;
        }

        set_pad(ds_len, &mut buf);

        self.input(&buf);
    }

    fn rate(&self) -> usize { K::to_usize() }
}

impl<L, K, M> Default for Sha3<L, K, M>
        where L: ArrayLength<u8>, K: ArrayLength<u8>, M: ArrayLength<u8> {
    fn default() -> Self { Self::new() }
}

impl<L, K, M> Digest for Sha3<L, K, M>
    where L: ArrayLength<u8>, K: ArrayLength<u8>, M: ArrayLength<u8> {
    type OutputSize = L;
    type BlockSize = K;

    fn input(&mut self, data: &[u8]) {
        assert!(self.offset < K::to_usize());

        let r = K::to_usize();
        let in_len = data.len();
        let mut in_pos: usize = 0;

        // Absorb
        while in_pos < in_len {
            let offset = self.offset;
            let nread = cmp::min(r - offset, in_len - in_pos);
            for i in 0..nread {
                self.state[offset + i] ^= data[in_pos + i];
            }
            in_pos += nread;

            if offset + nread != r {
                self.offset += nread;
                break;
            }

            self.offset = 0;
            keccak::f(&mut self.state);
        }
    }

    fn result(mut self) -> GenericArray<u8, Self::OutputSize> {
        self.finalize();

        let r = K::to_usize();
        let out_len = Self::OutputSize::to_usize();
        assert!(self.offset < out_len);
        assert!(self.offset < r);

        let mut out = GenericArray::default();
        let in_len = Self::OutputSize::to_usize();
        let mut in_pos: usize = 0;

        // Squeeze
        while in_pos < in_len {
            let offset = self.offset % r;
            let mut nread = cmp::min(r - offset, in_len - in_pos);
            if out_len != 0 {
                nread = cmp::min(nread, out_len - self.offset);
            }

            for i in 0..nread {
                out[in_pos + i] = self.state[offset + i];
            }
            in_pos += nread;

            if offset + nread != r {
                self.offset += nread;
                break;
            }

            if out_len == 0 {
                self.offset = 0;
            } else {
                self.offset += nread;
            }

            keccak::f(&mut self.state);
        }

        assert!(out_len != 0 && out_len == self.offset, "something left to squeeze");
        out
    }
}