1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
use crate::{SetOps,Set,OrderedSet,IndexedSet,RankedSet};
use indxvec::{MinMax,Indices,merge::*};

impl<T> SetOps<T> for Set<T> where T:Copy+PartialOrd {

    fn reverse(&self) -> Self {
        Self { v: revs(&self.v) }
    }

    /// Deletes any repetitions
    fn nonrepeat(&self) -> Self { 
        Self { v: sansrepeat(&self.v) }
    }

    /// Finds minimum, minimum's first index, maximum, maximum's first index of &[T] 
    fn infsup(&self) -> MinMax<T> {
        minmax(&self.v) 
    }

    /// True if m is a member of the set
    fn member(&self, m: T) -> bool  { 
        let opt = member(&self.v,m);
        opt.is_some()     
    }

    /// Search a Set for m. Returns index of the first m.
    fn search(&self, m: T)  -> Option<usize>  {
        member(&self.v,m)
    }

    /// Union of two unordered sets of the same type - 
    fn union(&self, s: &Self) -> OrderedSet<T>  {
        let s1 = sortm(self,true);
        let s2 = sortm(s,true);
        OrderedSet { ascending:true,v:unite(&s1,&s2) }
    }

    /// Intersection of two sets of the same type
    fn intersection(&self, s: &Self) -> OrderedSet<T>  {
        let s1 = sortm(self,true);
        let s2 = sortm(s,true);
        OrderedSet { ascending:true,v:intersect(&s1,&s2) }
    }

    /// Complement of s in self (i.e. self-s)
    fn difference(&self, s: &Self) -> OrderedSet<T>  {
        let s1 = sortm(self,true);
        let s2 = sortm(s,true); 
        OrderedSet { ascending:true,v:diff(&s1,&s2) } 
    }
    
}

impl<T> SetOps<T> for OrderedSet<T> where T: Copy+PartialOrd {

    fn reverse(&self) -> Self where T: Copy {
        Self { ascending: !self.ascending, v: revs(&self.v) }
    }

    /// Deletes any repetitions, in either order
    fn nonrepeat(&self) -> Self { 
        Self { ascending: self.ascending, v: sansrepeat(&self.v) }
    }

    /// Finds minimum, minimum's first index, maximum, maximum's first index
    /// Much simpler for OrderedSet than for Set.
    fn infsup(&self) -> MinMax<T> {
        let last = self.v.len()-1;
        if self.ascending { MinMax{min:self.v[0],minindex:0,max:self.v[last],maxindex:last} }
        else { MinMax{min:self.v[last],minindex:last,max:self.v[0],maxindex:0} }
    }

    /// True if m is a member of the set
    fn member(&self, m: T) -> bool { 
        let opt = if self.ascending { memsearch(&self.v,m) }
            else { memsearchdesc(&self.v,m) };
        opt.is_some()     
    }

    /// Search a Set for m. Returns index of the first m.
    fn search(&self, m: T)  -> Option<usize> where T: PartialOrd {
        if self.ascending { memsearch(&self.v,m) }
        else { memsearchdesc(&self.v,m) }        
    }

    /// Union of two ordered sets  
    fn union(&self, s: &Self) -> OrderedSet<T> { 
        let rself; let rs; 
        OrderedSet { ascending:true, v:unite(
            if self.ascending {&self.v} else {rself = revs(&self.v); &rself},
            if s.ascending {&s.v} else {rs = revs(&s.v); &rs}) } 
    } 

    /// Intersection of two sets of the same type
    fn intersection(&self, s: &Self) -> OrderedSet<T> {
        let rself; let rs; 
        OrderedSet { ascending:true, v:intersect(
            if self.ascending {&self.v} else {rself = revs(&self.v); &rself},
            if s.ascending {&s.v} else {rs = revs(&s.v); &rs}) } 
    }

    /// Complement of s in self (i.e. self-s)
    fn difference(&self, s: &Self) -> OrderedSet<T> {
        let rself; let rs; 
        OrderedSet { ascending:true, v:diff(
            if self.ascending {&self.v} else {rself = revs(&self.v); &rself},
            if s.ascending {&s.v} else {rs = revs(&s.v); &rs}) } 
    }
}

/// These are generally better than OrderedSet(s) for bulky end types, as
/// there is not so much of moving them around.
impl<T> SetOps<T> for IndexedSet<T> where T: Copy+PartialOrd {

    /// just reverse the index
    fn reverse(&self) -> Self where T: Copy {
        Self { ascending: !self.ascending, v: self.v.to_vec(), i: self.i.revindex() }
        }
    
    /// Deletes repetitions.
    fn nonrepeat(&self) -> Self { 
        let clean = &sansrepeat(&self.v);
        Self { ascending: self.ascending, v: clean.to_vec(), i:sortidx(clean)  }      
    }
 
    /// Finds minimum, minimum's first index, maximum, maximum's first index
    fn infsup(&self) -> MinMax<T> {
        let last = self.v.len()-1;
        let firstval = self.v[self.i[0]];
        let lastval = self.v[self.i[last]];
        if self.ascending { MinMax{min:firstval,minindex:self.i[0],max:lastval,maxindex:self.i[last]} }
        else { MinMax{min:lastval,minindex:self.i[last],max:firstval,maxindex:self.i[0]} }
    }
    
    /// True if m is a member of the set
    fn member(&self, m: T) -> bool where T: PartialOrd { 
        let opt = if self.ascending { memsearch_indexed(&self.v,&self.i,m) }
            else { memsearchdesc_indexed(&self.v,&self.i,m) };
        opt.is_some()     
    }
    
    /// Search a Set for m. Returns index of the first m.
    fn search(&self, m: T)  -> Option<usize>  {
        if self.ascending { memsearch_indexed(&self.v,&self.i,m) }
        else { memsearchdesc_indexed(&self.v,&self.i,m) }        
    }
    
    /// Union of two IndexedSets. Returns an OrderedSet. 
    fn union(&self, s: &Self) -> OrderedSet<T>  { 
        if self.ascending {
            if s.ascending { OrderedSet{ ascending:self.ascending, v: unite_indexed(&self.v,&self.i,&s.v, &s.i)} }
            else { OrderedSet { ascending:true, v: unite_indexed(&self.v,  &self.i,&s.v, &s.i.revindex() ) }     }
        }
        else if s.ascending { OrderedSet { ascending:true, v:unite_indexed(&self.v, &self.i.revindex(),&s.v,&s.i) } }
            else { OrderedSet { ascending:true, v:unite_indexed(&self.v, &self.i.revindex(), &s.v, &s.i.revindex()) } } 
    }      
    
    /// Intersection of two sets of the same type. 
    /// Via OrderedSet for convenience, for now.
    /// Probably should use intersect_indexed as in `union` above.
    fn intersection(&self, s: &Self) -> OrderedSet<T>  {
        let s1 = OrderedSet::from_indexed(self,true);
        let s2 = OrderedSet::from_indexed(s,true);
        s1.intersection(&s2)
    }
    
    /// Complement of s in self (i.e. self-s)
    fn difference(&self, s: &Self) -> OrderedSet<T> {
        let s1 = OrderedSet::from_indexed(self,true);
        let s2 = OrderedSet::from_indexed(s,true); 
        s1.difference(&s2) 
    }
}

/// For lots of set operations, it is probably better to work in IndexedSet(s) 
/// and then only to rank the final result.
impl<T> SetOps<T> for RankedSet<T> where T: Copy+PartialOrd {

    /// switches between ascending and descending ranks, 
    /// which is what is logically expected here 
    /// but it is not the same as a literal reversal of the ranks!
    fn reverse(&self) -> Self {
        Self { ascending: !self.ascending, v: self.v.to_vec(), i: self.i.complindex() }
    }
        
    /// Deletes repetitions.
    fn nonrepeat(&self) -> Self { 
        let clean = &sansrepeat(&self.v);
        Self { ascending: self.ascending, v: clean.to_vec(), i:rank(clean, self.ascending )  }      
    }
     
    /// Finds minimum, minimum's first index, maximum, maximum's first index
    fn infsup(&self) -> MinMax<T> {
        let last = self.v.len()-1;
        let si = self.i.invindex(); // ranks -> sort index
        let firstval = self.v[si[0]];
        let lastval = self.v[si[last]];
            if self.ascending { MinMax{min:firstval,minindex:si[0],max:lastval,maxindex:si[last]} }
            else { MinMax{min:lastval,minindex:si[last],max:firstval,maxindex:si[0]} }
        }
        
    /// True if m is a member of the set
    fn member(&self, m: T) -> bool { 
        let opt = if self.ascending { memsearch_indexed(&self.v,&self.i.invindex(),m) }
                else { memsearchdesc_indexed(&self.v,&self.i.invindex(),m) };
            opt.is_some()     
        }
        
    /// Search a Set for m. Returns index of the first m.
    fn search(&self, m: T)  -> Option<usize> {
        if self.ascending { memsearch_indexed(&self.v,&self.i.invindex(),m) }
        else { memsearchdesc_indexed(&self.v,&self.i.invindex(),m) }        
    }
        
    /// Union of two RankedSets. Returns an OrderedSet 
    fn union(&self, s: &Self) -> OrderedSet<T> { 
        if self.ascending {
            if s.ascending { OrderedSet{ ascending:self.ascending, v: unite_indexed(&self.v,&self.i.invindex(),&s.v, &s.i.invindex())} }
            else { OrderedSet { ascending:true, v: unite_indexed(&self.v,  &self.i.invindex(),&s.v, &s.i.invindex().revindex() ) }     }
        }
        else if s.ascending { OrderedSet { ascending:true, v:unite_indexed(&self.v, &self.i.invindex().revindex(),&s.v,&s.i.invindex()) } }
            else { OrderedSet { ascending:true, v:unite_indexed(&self.v, &self.i.invindex().revindex(), &s.v, &s.i.invindex().revindex()) } } 
    }      
        
    /// Intersection of two RankedSets. 
    /// Via OrderedSet for convenience, for now.
    /// Todo: Probably should use intersect_indexed as in `union` above.
    fn intersection(&self, s: &Self) -> OrderedSet<T> {
        let s1 = OrderedSet::from_ranked(self,true);
        let s2 = OrderedSet::from_ranked(s,true);
        s1.intersection(&s2)
    }
        
    /// Complement of s in self (i.e. self-s)
    fn difference(&self, s: &Self) -> OrderedSet<T> {
        let s1 = OrderedSet::from_ranked(self,true);
        let s2 = OrderedSet::from_ranked(s,true); 
        s1.difference(&s2) 
    }  

}