1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! Fork of Arc for Servo. This has the following advantages over std::sync::Arc:
//!
//! * We don't waste storage on the weak reference count.
//! * We don't do extra RMU operations to handle the possibility of weak references.
//! * We can experiment with arena allocation (todo).
//! * We can add methods to support our custom use cases [1].
//! * We have support for dynamically-sized types (see from_header_and_iter).
//! * We have support for thin arcs to unsized types (see ThinArc).
//!
//! [1]: https://bugzilla.mozilla.org/show_bug.cgi?id=1360883

// The semantics of Arc are alread documented in the Rust docs, so we don't
// duplicate those here.
#![allow(missing_docs)]

extern crate nodrop;
#[cfg(feature = "servo")] extern crate serde;
extern crate stable_deref_trait;

use nodrop::NoDrop;
#[cfg(feature = "servo")]
use serde::{Deserialize, Serialize};
use stable_deref_trait::{CloneStableDeref, StableDeref};
use std::{isize, usize};
use std::borrow;
use std::cmp::Ordering;
use std::convert::From;
use std::fmt;
use std::hash::{Hash, Hasher};
use std::iter::{ExactSizeIterator, Iterator};
use std::mem;
use std::ops::{Deref, DerefMut};
use std::os::raw::c_void;
use std::process;
use std::ptr;
use std::slice;
use std::sync::atomic;
use std::sync::atomic::Ordering::{Acquire, Relaxed, Release};

// Private macro to get the offset of a struct field in bytes from the address of the struct.
macro_rules! offset_of {
    ($container:path, $field:ident) => {{
        // Make sure the field actually exists. This line ensures that a compile-time error is
        // generated if $field is accessed through a Deref impl.
        let $container { $field: _, .. };

        // Create an (invalid) instance of the container and calculate the offset to its
        // field. Using a null pointer might be UB if `&(*(0 as *const T)).field` is interpreted to
        // be nullptr deref.
        let invalid: $container = ::std::mem::uninitialized();
        let offset = &invalid.$field as *const _ as usize - &invalid as *const _ as usize;

        // Do not run destructors on the made up invalid instance.
        ::std::mem::forget(invalid);
        offset as isize
    }};
}

/// A soft limit on the amount of references that may be made to an `Arc`.
///
/// Going above this limit will abort your program (although not
/// necessarily) at _exactly_ `MAX_REFCOUNT + 1` references.
const MAX_REFCOUNT: usize = (isize::MAX) as usize;

/// Wrapper type for pointers to get the non-zero optimization. When
/// NonZero/Shared/Unique are stabilized, we should just use Shared
/// here to get the same effect. Gankro is working on this in [1].
///
/// It's unfortunate that this needs to infect all the caller types
/// with 'static. It would be nice to just use a &() and a PhantomData<T>
/// instead, but then the compiler can't determine whether the &() should
/// be thin or fat (which depends on whether or not T is sized). Given
/// that this is all a temporary hack, this restriction is fine for now.
///
/// [1]: https://github.com/rust-lang/rust/issues/27730
// FIXME: remove this and use std::ptr::NonNull when Firefox requires Rust 1.25+
pub struct NonZeroPtrMut<T: ?Sized + 'static>(&'static mut T);
impl<T: ?Sized> NonZeroPtrMut<T> {
    pub fn new(ptr: *mut T) -> Self {
        assert!(!(ptr as *mut u8).is_null());
        NonZeroPtrMut(unsafe { mem::transmute(ptr) })
    }

    pub fn ptr(&self) -> *mut T {
        self.0 as *const T as *mut T
    }
}

impl<T: ?Sized + 'static> Clone for NonZeroPtrMut<T> {
    fn clone(&self) -> Self {
        NonZeroPtrMut::new(self.ptr())
    }
}

impl<T: ?Sized + 'static> fmt::Pointer for NonZeroPtrMut<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Pointer::fmt(&self.ptr(), f)
    }
}

impl<T: ?Sized + 'static> fmt::Debug for NonZeroPtrMut<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        <Self as fmt::Pointer>::fmt(self, f)
    }
}

impl<T: ?Sized + 'static> PartialEq for NonZeroPtrMut<T> {
    fn eq(&self, other: &Self) -> bool {
        self.ptr() == other.ptr()
    }
}

impl<T: ?Sized + 'static> Eq for NonZeroPtrMut<T> {}

impl<T: Sized + 'static> Hash for NonZeroPtrMut<T> {
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.ptr().hash(state)
    }
}

#[repr(C)]
pub struct Arc<T: ?Sized + 'static> {
    p: NonZeroPtrMut<ArcInner<T>>,
}

/// An Arc that is known to be uniquely owned
///
/// This lets us build arcs that we can mutate before
/// freezing, without needing to change the allocation
pub struct UniqueArc<T: ?Sized + 'static>(Arc<T>);

impl<T> UniqueArc<T> {
    #[inline]
    /// Construct a new UniqueArc
    pub fn new(data: T) -> Self {
        UniqueArc(Arc::new(data))
    }

    #[inline]
    /// Convert to a shareable Arc<T> once we're done using it
    pub fn shareable(self) -> Arc<T> {
        self.0
    }
}

impl<T> Deref for UniqueArc<T> {
    type Target = T;
    fn deref(&self) -> &T {
        &*self.0
    }
}

impl<T> DerefMut for UniqueArc<T> {
    fn deref_mut(&mut self) -> &mut T {
        // We know this to be uniquely owned
        unsafe { &mut (*self.0.ptr()).data }
    }
}

unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {}
unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {}

#[repr(C)]
struct ArcInner<T: ?Sized> {
    count: atomic::AtomicUsize,
    data: T,
}

unsafe impl<T: ?Sized + Sync + Send> Send for ArcInner<T> {}
unsafe impl<T: ?Sized + Sync + Send> Sync for ArcInner<T> {}

impl<T> Arc<T> {
    #[inline]
    pub fn new(data: T) -> Self {
        let x = Box::new(ArcInner {
            count: atomic::AtomicUsize::new(1),
            data: data,
        });
        Arc { p: NonZeroPtrMut::new(Box::into_raw(x)) }
    }

    #[inline]
    pub fn into_raw(this: Self) -> *const T {
        let ptr = unsafe { &((*this.ptr()).data) as *const _ };
        mem::forget(this);
        ptr
    }

    #[inline]
    unsafe fn from_raw(ptr: *const T) -> Self {
        // To find the corresponding pointer to the `ArcInner` we need
        // to subtract the offset of the `data` field from the pointer.
        let ptr = (ptr as *const u8).offset(-offset_of!(ArcInner<T>, data));
        Arc {
            p: NonZeroPtrMut::new(ptr as *mut ArcInner<T>),
        }
    }

    /// Produce a pointer to the data that can be converted back
    /// to an arc
    #[inline]
    pub fn borrow_arc<'a>(&'a self) -> ArcBorrow<'a, T> {
        ArcBorrow(&**self)
    }

    /// Temporarily converts |self| into a bonafide RawOffsetArc and exposes it to the
    /// provided callback. The refcount is not modified.
    #[inline(always)]
    pub fn with_raw_offset_arc<F, U>(&self, f: F) -> U
        where F: FnOnce(&RawOffsetArc<T>) -> U
    {
        // Synthesize transient Arc, which never touches the refcount of the ArcInner.
        let transient = unsafe { NoDrop::new(Arc::into_raw_offset(ptr::read(self))) };

        // Expose the transient Arc to the callback, which may clone it if it wants.
        let result = f(&transient);

        // Forget the transient Arc to leave the refcount untouched.
        mem::forget(transient);

        // Forward the result.
        result
    }

    /// Returns the address on the heap of the Arc itself -- not the T within it -- for memory
    /// reporting.
    pub fn heap_ptr(&self) -> *const c_void {
        self.p.ptr() as *const ArcInner<T> as *const c_void
    }
}

impl<T: ?Sized> Arc<T> {
    #[inline]
    fn inner(&self) -> &ArcInner<T> {
        // This unsafety is ok because while this arc is alive we're guaranteed
        // that the inner pointer is valid. Furthermore, we know that the
        // `ArcInner` structure itself is `Sync` because the inner data is
        // `Sync` as well, so we're ok loaning out an immutable pointer to these
        // contents.
        unsafe { &*self.ptr() }
    }

    // Non-inlined part of `drop`. Just invokes the destructor.
    #[inline(never)]
    unsafe fn drop_slow(&mut self) {
        let _ = Box::from_raw(self.ptr());
    }


    #[inline]
    pub fn ptr_eq(this: &Self, other: &Self) -> bool {
        this.ptr() == other.ptr()
    }

    fn ptr(&self) -> *mut ArcInner<T> {
        self.p.ptr()
    }
}

impl<T: ?Sized> Clone for Arc<T> {
    #[inline]
    fn clone(&self) -> Self {
        // Using a relaxed ordering is alright here, as knowledge of the
        // original reference prevents other threads from erroneously deleting
        // the object.
        //
        // As explained in the [Boost documentation][1], Increasing the
        // reference counter can always be done with memory_order_relaxed: New
        // references to an object can only be formed from an existing
        // reference, and passing an existing reference from one thread to
        // another must already provide any required synchronization.
        //
        // [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
        let old_size = self.inner().count.fetch_add(1, Relaxed);

        // However we need to guard against massive refcounts in case someone
        // is `mem::forget`ing Arcs. If we don't do this the count can overflow
        // and users will use-after free. We racily saturate to `isize::MAX` on
        // the assumption that there aren't ~2 billion threads incrementing
        // the reference count at once. This branch will never be taken in
        // any realistic program.
        //
        // We abort because such a program is incredibly degenerate, and we
        // don't care to support it.
        if old_size > MAX_REFCOUNT {
            process::abort();
        }

        Arc { p: NonZeroPtrMut::new(self.ptr()) }
    }
}

impl<T: ?Sized> Deref for Arc<T> {
    type Target = T;

    #[inline]
    fn deref(&self) -> &T {
        &self.inner().data
    }
}

impl<T: Clone> Arc<T> {
    #[inline]
    pub fn make_mut(this: &mut Self) -> &mut T {
        if !this.is_unique() {
            // Another pointer exists; clone
            *this = Arc::new((**this).clone());
        }

        unsafe {
            // This unsafety is ok because we're guaranteed that the pointer
            // returned is the *only* pointer that will ever be returned to T. Our
            // reference count is guaranteed to be 1 at this point, and we required
            // the Arc itself to be `mut`, so we're returning the only possible
            // reference to the inner data.
            &mut (*this.ptr()).data
        }
    }
}

impl<T: ?Sized> Arc<T> {
    #[inline]
    pub fn get_mut(this: &mut Self) -> Option<&mut T> {
        if this.is_unique() {
            unsafe {
                // See make_mut() for documentation of the threadsafety here.
                Some(&mut (*this.ptr()).data)
            }
        } else {
            None
        }
    }

    #[inline]
    pub fn is_unique(&self) -> bool {
        // We can use Relaxed here, but the justification is a bit subtle.
        //
        // The reason to use Acquire would be to synchronize with other threads
        // that are modifying the refcount with Release, i.e. to ensure that
        // their writes to memory guarded by this refcount are flushed. However,
        // we know that threads only modify the contents of the Arc when they
        // observe the refcount to be 1, and no other thread could observe that
        // because we're holding one strong reference here.
        self.inner().count.load(Relaxed) == 1
    }
}

impl<T: ?Sized> Drop for Arc<T> {
    #[inline]
    fn drop(&mut self) {
        // Because `fetch_sub` is already atomic, we do not need to synchronize
        // with other threads unless we are going to delete the object.
        if self.inner().count.fetch_sub(1, Release) != 1 {
            return;
        }

        // FIXME(bholley): Use the updated comment when [2] is merged.
        //
        // This load is needed to prevent reordering of use of the data and
        // deletion of the data.  Because it is marked `Release`, the decreasing
        // of the reference count synchronizes with this `Acquire` load. This
        // means that use of the data happens before decreasing the reference
        // count, which happens before this load, which happens before the
        // deletion of the data.
        //
        // As explained in the [Boost documentation][1],
        //
        // > It is important to enforce any possible access to the object in one
        // > thread (through an existing reference) to *happen before* deleting
        // > the object in a different thread. This is achieved by a "release"
        // > operation after dropping a reference (any access to the object
        // > through this reference must obviously happened before), and an
        // > "acquire" operation before deleting the object.
        //
        // [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
        // [2]: https://github.com/rust-lang/rust/pull/41714
        self.inner().count.load(Acquire);

        unsafe {
            self.drop_slow();
        }
    }
}

impl<T: ?Sized + PartialEq> PartialEq for Arc<T> {
    fn eq(&self, other: &Arc<T>) -> bool {
        Self::ptr_eq(self, other) || *(*self) == *(*other)
    }

    fn ne(&self, other: &Arc<T>) -> bool {
        !Self::ptr_eq(self, other) && *(*self) != *(*other)
    }
}
impl<T: ?Sized + PartialOrd> PartialOrd for Arc<T> {
    fn partial_cmp(&self, other: &Arc<T>) -> Option<Ordering> {
        (**self).partial_cmp(&**other)
    }

    fn lt(&self, other: &Arc<T>) -> bool {
        *(*self) < *(*other)
    }

    fn le(&self, other: &Arc<T>) -> bool {
        *(*self) <= *(*other)
    }

    fn gt(&self, other: &Arc<T>) -> bool {
        *(*self) > *(*other)
    }

    fn ge(&self, other: &Arc<T>) -> bool {
        *(*self) >= *(*other)
    }
}
impl<T: ?Sized + Ord> Ord for Arc<T> {
    fn cmp(&self, other: &Arc<T>) -> Ordering {
        (**self).cmp(&**other)
    }
}
impl<T: ?Sized + Eq> Eq for Arc<T> {}

impl<T: ?Sized + fmt::Display> fmt::Display for Arc<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Display::fmt(&**self, f)
    }
}

impl<T: ?Sized + fmt::Debug> fmt::Debug for Arc<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Debug::fmt(&**self, f)
    }
}

impl<T: ?Sized> fmt::Pointer for Arc<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Pointer::fmt(&self.ptr(), f)
    }
}

impl<T: Default> Default for Arc<T> {
    fn default() -> Arc<T> {
        Arc::new(Default::default())
    }
}

impl<T: ?Sized + Hash> Hash for Arc<T> {
    fn hash<H: Hasher>(&self, state: &mut H) {
        (**self).hash(state)
    }
}

impl<T> From<T> for Arc<T> {
    #[inline]
    fn from(t: T) -> Self {
        Arc::new(t)
    }
}

impl<T: ?Sized> borrow::Borrow<T> for Arc<T> {
    #[inline]
    fn borrow(&self) -> &T {
        &**self
    }
}

impl<T: ?Sized> AsRef<T> for Arc<T> {
    #[inline]
    fn as_ref(&self) -> &T {
        &**self
    }
}

unsafe impl<T: ?Sized> StableDeref for Arc<T> {}
unsafe impl<T: ?Sized> CloneStableDeref for Arc<T> {}

#[cfg(feature = "servo")]
impl<'de, T: Deserialize<'de>> Deserialize<'de> for Arc<T>
{
    fn deserialize<D>(deserializer: D) -> Result<Arc<T>, D::Error>
    where
        D: ::serde::de::Deserializer<'de>,
    {
        T::deserialize(deserializer).map(Arc::new)
    }
}

#[cfg(feature = "servo")]
impl<T: Serialize> Serialize for Arc<T>
{
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: ::serde::ser::Serializer,
    {
        (**self).serialize(serializer)
    }
}

/// Structure to allow Arc-managing some fixed-sized data and a variably-sized
/// slice in a single allocation.
#[derive(Debug, Eq, PartialEq, PartialOrd)]
pub struct HeaderSlice<H, T: ?Sized> {
    /// The fixed-sized data.
    pub header: H,

    /// The dynamically-sized data.
    pub slice: T,
}

#[inline(always)]
fn divide_rounding_up(dividend: usize, divisor: usize) -> usize {
    (dividend + divisor - 1) / divisor
}

impl<H, T> Arc<HeaderSlice<H, [T]>> {
    /// Creates an Arc for a HeaderSlice using the given header struct and
    /// iterator to generate the slice. The resulting Arc will be fat.
    #[inline]
    pub fn from_header_and_iter<I>(header: H, mut items: I) -> Self
        where I: Iterator<Item=T> + ExactSizeIterator
    {
        use ::std::mem::size_of;
        assert_ne!(size_of::<T>(), 0, "Need to think about ZST");

        // Compute the required size for the allocation.
        let num_items = items.len();
        let size = {
            // First, determine the alignment of a hypothetical pointer to a
            // HeaderSlice.
            let fake_slice_ptr_align: usize = mem::align_of::<ArcInner<HeaderSlice<H, [T; 1]>>>();

            // Next, synthesize a totally garbage (but properly aligned) pointer
            // to a sequence of T.
            let fake_slice_ptr = fake_slice_ptr_align as *const T;

            // Convert that sequence to a fat pointer. The address component of
            // the fat pointer will be garbage, but the length will be correct.
            let fake_slice = unsafe { slice::from_raw_parts(fake_slice_ptr, num_items) };

            // Pretend the garbage address points to our allocation target (with
            // a trailing sequence of T), rather than just a sequence of T.
            let fake_ptr = fake_slice as *const [T] as *const ArcInner<HeaderSlice<H, [T]>>;
            let fake_ref: &ArcInner<HeaderSlice<H, [T]>> = unsafe { &*fake_ptr };

            // Use size_of_val, which will combine static information about the
            // type with the length from the fat pointer. The garbage address
            // will not be used.
            mem::size_of_val(fake_ref)
        };

        let ptr: *mut ArcInner<HeaderSlice<H, [T]>>;
        unsafe {
            // Allocate the buffer. We use Vec because the underlying allocation
            // machinery isn't available in stable Rust.
            //
            // To avoid alignment issues, we allocate words rather than bytes,
            // rounding up to the nearest word size.
            let buffer = if mem::align_of::<T>() <= mem::align_of::<usize>() {
                Self::allocate_buffer::<usize>(size)
            } else if mem::align_of::<T>() <= mem::align_of::<u64>() {
                // On 32-bit platforms <T> may have 8 byte alignment while usize has 4 byte aligment.
                // Use u64 to avoid over-alignment.
                // This branch will compile away in optimized builds.
                Self::allocate_buffer::<u64>(size)
            } else {
                panic!("Over-aligned type not handled");
            };

            // Synthesize the fat pointer. We do this by claiming we have a direct
            // pointer to a [T], and then changing the type of the borrow. The key
            // point here is that the length portion of the fat pointer applies
            // only to the number of elements in the dynamically-sized portion of
            // the type, so the value will be the same whether it points to a [T]
            // or something else with a [T] as its last member.
            let fake_slice: &mut [T] = slice::from_raw_parts_mut(buffer as *mut T, num_items);
            ptr = fake_slice as *mut [T] as *mut ArcInner<HeaderSlice<H, [T]>>;

            // Write the data.
            //
            // Note that any panics here (i.e. from the iterator) are safe, since
            // we'll just leak the uninitialized memory.
            ptr::write(&mut ((*ptr).count), atomic::AtomicUsize::new(1));
            ptr::write(&mut ((*ptr).data.header), header);
            let mut current: *mut T = &mut (*ptr).data.slice[0];
            for _ in 0..num_items {
                ptr::write(current, items.next().expect("ExactSizeIterator over-reported length"));
                current = current.offset(1);
            }
            assert!(items.next().is_none(), "ExactSizeIterator under-reported length");

            // We should have consumed the buffer exactly.
            debug_assert_eq!(current as *mut u8, buffer.offset(size as isize));
        }

        // Return the fat Arc.
        assert_eq!(size_of::<Self>(), size_of::<usize>() * 2, "The Arc will be fat");
        Arc { p: NonZeroPtrMut::new(ptr) }
    }

    #[inline]
    unsafe fn allocate_buffer<W>(size: usize) -> *mut u8 {
        let words_to_allocate = divide_rounding_up(size, mem::size_of::<W>());
        let mut vec = Vec::<W>::with_capacity(words_to_allocate);
        vec.set_len(words_to_allocate);
        Box::into_raw(vec.into_boxed_slice()) as *mut W as *mut u8
    }
}

/// Header data with an inline length. Consumers that use HeaderWithLength as the
/// Header type in HeaderSlice can take advantage of ThinArc.
#[derive(Debug, Eq, PartialEq, PartialOrd)]
pub struct HeaderWithLength<H> {
    /// The fixed-sized data.
    pub header: H,

    /// The slice length.
    length: usize,
}

impl<H> HeaderWithLength<H> {
    /// Creates a new HeaderWithLength.
    pub fn new(header: H, length: usize) -> Self {
        HeaderWithLength {
            header: header,
            length: length,
        }
    }
}

type HeaderSliceWithLength<H, T> = HeaderSlice<HeaderWithLength<H>, T>;
pub struct ThinArc<H: 'static, T: 'static> {
    ptr: *mut ArcInner<HeaderSliceWithLength<H, [T; 1]>>,
}

unsafe impl<H: Sync + Send, T: Sync + Send> Send for ThinArc<H, T> {}
unsafe impl<H: Sync + Send, T: Sync + Send> Sync for ThinArc<H, T> {}

// Synthesize a fat pointer from a thin pointer.
//
// See the comment around the analogous operation in from_header_and_iter.
fn thin_to_thick<H, T>(thin: *mut ArcInner<HeaderSliceWithLength<H, [T; 1]>>)
    -> *mut ArcInner<HeaderSliceWithLength<H, [T]>>
{
    let len = unsafe { (*thin).data.header.length };
    let fake_slice: *mut [T] = unsafe {
        slice::from_raw_parts_mut(thin as *mut T, len)
    };

    fake_slice as *mut ArcInner<HeaderSliceWithLength<H, [T]>>
}

impl<H: 'static, T: 'static> ThinArc<H, T> {
    /// Temporarily converts |self| into a bonafide Arc and exposes it to the
    /// provided callback. The refcount is not modified.
    #[inline]
    pub fn with_arc<F, U>(&self, f: F) -> U
        where F: FnOnce(&Arc<HeaderSliceWithLength<H, [T]>>) -> U
    {
        // Synthesize transient Arc, which never touches the refcount of the ArcInner.
        let transient = NoDrop::new(Arc {
            p: NonZeroPtrMut::new(thin_to_thick(self.ptr))
        });

        // Expose the transient Arc to the callback, which may clone it if it wants.
        let result = f(&transient);

        // Forget the transient Arc to leave the refcount untouched.
        // XXXManishearth this can be removed when unions stabilize,
        // since then NoDrop becomes zero overhead
        mem::forget(transient);

        // Forward the result.
        result
    }

    /// Returns the address on the heap of the ThinArc itself -- not the T
    /// within it -- for memory reporting.
    #[inline]
    pub fn heap_ptr(&self) -> *const c_void {
        self.ptr as *const ArcInner<T> as *const c_void
    }
}

impl<H, T> Deref for ThinArc<H, T> {
    type Target = HeaderSliceWithLength<H, [T]>;

    #[inline]
    fn deref(&self) -> &Self::Target {
        unsafe { &(*thin_to_thick(self.ptr)).data }
    }
}

impl<H: 'static, T: 'static> Clone for ThinArc<H, T> {
    #[inline]
    fn clone(&self) -> Self {
        ThinArc::with_arc(self, |a| Arc::into_thin(a.clone()))
    }
}

impl<H: 'static, T: 'static> Drop for ThinArc<H, T> {
    #[inline]
    fn drop(&mut self) {
        let _ = Arc::from_thin(ThinArc { ptr: self.ptr });
    }
}

impl<H: 'static, T: 'static> Arc<HeaderSliceWithLength<H, [T]>> {
    /// Converts an Arc into a ThinArc. This consumes the Arc, so the refcount
    /// is not modified.
    #[inline]
    pub fn into_thin(a: Self) -> ThinArc<H, T> {
        assert_eq!(a.header.length, a.slice.len(),
                "Length needs to be correct for ThinArc to work");
        let fat_ptr: *mut ArcInner<HeaderSliceWithLength<H, [T]>> = a.ptr();
        mem::forget(a);
        let thin_ptr = fat_ptr as *mut [usize] as *mut usize;
        ThinArc {
            ptr: thin_ptr as *mut ArcInner<HeaderSliceWithLength<H, [T; 1]>>
        }
    }

    /// Converts a ThinArc into an Arc. This consumes the ThinArc, so the refcount
    /// is not modified.
    #[inline]
    pub fn from_thin(a: ThinArc<H, T>) -> Self {
        let ptr = thin_to_thick(a.ptr);
        mem::forget(a);
        Arc {
            p: NonZeroPtrMut::new(ptr)
        }
    }
}

impl<H: PartialEq + 'static, T: PartialEq + 'static> PartialEq for ThinArc<H, T> {
    #[inline]
    fn eq(&self, other: &ThinArc<H, T>) -> bool {
        ThinArc::with_arc(self, |a| {
            ThinArc::with_arc(other, |b| {
                *a == *b
            })
        })
    }
}

impl<H: Eq + 'static, T: Eq + 'static> Eq for ThinArc<H, T> {}

/// An Arc, except it holds a pointer to the T instead of to the
/// entire ArcInner.
///
/// ```text
///  Arc<T>    RawOffsetArc<T>
///   |          |
///   v          v
///  ---------------------
/// | RefCount | T (data) | [ArcInner<T>]
///  ---------------------
/// ```
///
/// This means that this is a direct pointer to
/// its contained data (and can be read from by both C++ and Rust),
/// but we can also convert it to a "regular" Arc<T> by removing the offset
#[derive(Eq)]
#[repr(C)]
pub struct RawOffsetArc<T: 'static> {
    ptr: NonZeroPtrMut<T>,
}

unsafe impl<T: 'static + Sync + Send> Send for RawOffsetArc<T> {}
unsafe impl<T: 'static + Sync + Send> Sync for RawOffsetArc<T> {}

impl<T: 'static> Deref for RawOffsetArc<T> {
    type Target = T;
    fn deref(&self) -> &Self::Target {
        unsafe { &*self.ptr.ptr() }
    }
}

impl<T: 'static> Clone for RawOffsetArc<T> {
    #[inline]
    fn clone(&self) -> Self {
        Arc::into_raw_offset(self.clone_arc())
    }
}

impl<T: 'static> Drop for RawOffsetArc<T> {
    fn drop(&mut self) {
        let _ = Arc::from_raw_offset(RawOffsetArc { ptr: self.ptr.clone() });
    }
}


impl<T: fmt::Debug + 'static> fmt::Debug for RawOffsetArc<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Debug::fmt(&**self, f)
    }
}

impl<T: PartialEq> PartialEq for RawOffsetArc<T> {
    fn eq(&self, other: &RawOffsetArc<T>) -> bool {
        *(*self) == *(*other)
    }

    fn ne(&self, other: &RawOffsetArc<T>) -> bool {
        *(*self) != *(*other)
    }
}

impl<T: 'static> RawOffsetArc<T> {
    /// Temporarily converts |self| into a bonafide Arc and exposes it to the
    /// provided callback. The refcount is not modified.
    #[inline]
    pub fn with_arc<F, U>(&self, f: F) -> U
        where F: FnOnce(&Arc<T>) -> U
    {
        // Synthesize transient Arc, which never touches the refcount of the ArcInner.
        let transient = unsafe { NoDrop::new(Arc::from_raw(self.ptr.ptr())) };

        // Expose the transient Arc to the callback, which may clone it if it wants.
        let result = f(&transient);

        // Forget the transient Arc to leave the refcount untouched.
        // XXXManishearth this can be removed when unions stabilize,
        // since then NoDrop becomes zero overhead
        mem::forget(transient);

        // Forward the result.
        result
    }

    /// If uniquely owned, provide a mutable reference
    /// Else create a copy, and mutate that
    #[inline]
    pub fn make_mut(&mut self) -> &mut T where T: Clone {
        unsafe {
            // extract the RawOffsetArc as an owned variable
            let this = ptr::read(self);
            // treat it as a real Arc
            let mut arc = Arc::from_raw_offset(this);
            // obtain the mutable reference. Cast away the lifetime
            // This may mutate `arc`
            let ret = Arc::make_mut(&mut arc) as *mut _;
            // Store the possibly-mutated arc back inside, after converting
            // it to a RawOffsetArc again
            ptr::write(self, Arc::into_raw_offset(arc));
            &mut *ret
        }
    }

    /// Clone it as an Arc
    #[inline]
    pub fn clone_arc(&self) -> Arc<T> {
        RawOffsetArc::with_arc(self, |a| a.clone())
    }

    /// Produce a pointer to the data that can be converted back
    /// to an arc
    #[inline]
    pub fn borrow_arc<'a>(&'a self) -> ArcBorrow<'a, T> {
        ArcBorrow(&**self)
    }
}

impl<T: 'static> Arc<T> {
    /// Converts an Arc into a RawOffsetArc. This consumes the Arc, so the refcount
    /// is not modified.
    #[inline]
    pub fn into_raw_offset(a: Self) -> RawOffsetArc<T> {
        RawOffsetArc {
            ptr: NonZeroPtrMut::new(Arc::into_raw(a) as *mut T),
        }
    }

    /// Converts a RawOffsetArc into an Arc. This consumes the RawOffsetArc, so the refcount
    /// is not modified.
    #[inline]
    pub fn from_raw_offset(a: RawOffsetArc<T>) -> Self {
        let ptr = a.ptr.ptr();
        mem::forget(a);
        unsafe { Arc::from_raw(ptr) }
    }
}

/// A "borrowed Arc". This is a pointer to
/// a T that is known to have been allocated within an
/// Arc.
///
/// This is equivalent in guarantees to `&Arc<T>`, however it is
/// a bit more flexible. To obtain an `&Arc<T>` you must have
/// an Arc<T> instance somewhere pinned down until we're done with it.
///
/// However, Gecko hands us refcounted things as pointers to T directly,
/// so we have to conjure up a temporary Arc on the stack each time. The
/// same happens for when the object is managed by a RawOffsetArc.
///
/// ArcBorrow lets us deal with borrows of known-refcounted objects
/// without needing to worry about how they're actually stored.
#[derive(Eq, PartialEq)]
pub struct ArcBorrow<'a, T: 'a>(&'a T);

impl<'a, T> Copy for ArcBorrow<'a, T> {}
impl<'a, T> Clone for ArcBorrow<'a, T> {
    #[inline]
    fn clone(&self) -> Self {
        *self
    }
}

impl<'a, T> ArcBorrow<'a, T> {
    #[inline]
    pub fn clone_arc(&self) -> Arc<T> {
        let arc = unsafe { Arc::from_raw(self.0) };
        // addref it!
        mem::forget(arc.clone());
        arc
    }

    /// For constructing from a reference known to be Arc-backed,
    /// e.g. if we obtain such a reference over FFI
    #[inline]
    pub unsafe fn from_ref(r: &'a T) -> Self {
        ArcBorrow(r)
    }

    #[inline]
    pub fn with_arc<F, U>(&self, f: F) -> U where F: FnOnce(&Arc<T>) -> U, T: 'static {
        // Synthesize transient Arc, which never touches the refcount.
        let transient = unsafe { NoDrop::new(Arc::from_raw(self.0)) };

        // Expose the transient Arc to the callback, which may clone it if it wants.
        let result = f(&transient);

        // Forget the transient Arc to leave the refcount untouched.
        // XXXManishearth this can be removed when unions stabilize,
        // since then NoDrop becomes zero overhead
        mem::forget(transient);

        // Forward the result.
        result
    }
}

impl<'a, T> Deref for ArcBorrow<'a, T> {
    type Target = T;

    #[inline]
    fn deref(&self) -> &T {
        &*self.0
    }
}

#[cfg(test)]
mod tests {
    use std::clone::Clone;
    use std::ops::Drop;
    use std::sync::atomic;
    use std::sync::atomic::Ordering::{Acquire, SeqCst};
    use super::{Arc, HeaderWithLength, ThinArc};

    #[derive(PartialEq)]
    struct Canary(*mut atomic::AtomicUsize);

    impl Drop for Canary {
        fn drop(&mut self) {
            unsafe { (*self.0).fetch_add(1, SeqCst); }
        }
    }

    #[test]
    fn slices_and_thin() {
        let mut canary = atomic::AtomicUsize::new(0);
        let c = Canary(&mut canary as *mut atomic::AtomicUsize);
        let v = vec![5, 6];
        let header = HeaderWithLength::new(c, v.len());
        {
            let x = Arc::into_thin(Arc::from_header_and_iter(header, v.into_iter()));
            let y = ThinArc::with_arc(&x, |q| q.clone());
            let _ = y.clone();
            let _ = x == x;
            Arc::from_thin(x.clone());
        }
        assert_eq!(canary.load(Acquire), 1);
    }
}