1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
//! # Serde Rusqlite
//!
//! This crate provides convenience functions to bridge serde and rusqlite. With their help
//! you can "deserialize" rusqlite `Row`'s into serde `Deserialize` types and "serialize" types
//! implementing `Serialize` into bound query arguments (positional or named) that rusqlite expects.
//!
//! Serialization of named bound arguments is only supported from `struct`s and `map`s because other
//! serde types lack column name information. Likewise, serialization of positional bound arguments
//! is only supported from `tuple`s, `sequence`s and primitive non-iterable types. In the latter case
//! the result will be single-element vector. Each serialized field or element must implement
//! `rusqlite::types::ToSql`.
//!
//! For deserialization you can use two families of functions: `from_*()` and `from_*_with_columns()`.
//! The most used one is the former. The latter allows you to specify column names for types that need
//! them, but don't supply them. This includes different `Map` types like `HashMap`. Specifying columns
//! for deserialization into e.g. `struct` doesn't have any effect as the field list of the struct itself
//! will be used in any case.
//!
//! SQLite only supports 5 types: `NULL` (`None`), `INTEGER` (`i64`), `REAL` (`f64`), `TEXT` (`String`)
//! and `BLOB` (`Vec<u8>`). Corresponding rust types are inside brackets.
//!
//! Some types employ non-trivial handling, these are described below:
//!
//! * Serialization of `u64` will fail if it can't be represented by `i64` due to sqlite limitations.
//! * Simple `enum`s will be serialized as strings so:
//!
//!   ```
//!   enum Gender {
//!      M,
//!      F,
//!   }
//!   ```
//!
//!   will have two possible `TEXT` options in the database "M" and "F". Deserialization into `enum`
//!   from `TEXT` is also supported.
//! * `bool`s are serialized as `INTEGER`s 0 or 1, can be deserialized from `INTEGER` and `REAL` where
//!   0 and 0.0 are `false`, anything else is `true`.
//! * `f64` and `f32` values of `NaN` are serialized as `NULL`s. When deserializing such value `Option<f64>`
//!   will have value of `None` and `f64` will have value of `NaN`. The same applies to `f32`.
//! * `Bytes`, `ByteBuf` from `serde_bytes` are supported as optimized way of handling `BLOB`s.
//! * `unit` serializes to `NULL`.
//! * Only `sequence`s of `u8` are serialized and deserialized, `BLOB` database type is used. It's
//!   more optimal though to use `Bytes` and `ByteBuf` from `serde_bytes` for such fields.
//! * `unit_struct` serializes to `struct` name as `TEXT`, when deserializing the check is made to ensure
//!   that `struct` name coincides with the string in the database.
//!
//! # Examples
//! ```
//! use rusqlite::NO_PARAMS;
//! use serde_derive::{Deserialize, Serialize};
//! use serde_rusqlite::*;
//!
//! #[derive(Serialize, Deserialize, Debug, PartialEq)]
//! struct Example {
//!    id: i64,
//!    name: String,
//! }
//!
//! fn main() {
//!    let connection = rusqlite::Connection::open_in_memory().unwrap();
//!    connection.execute("CREATE TABLE example (id INT, name TEXT)", NO_PARAMS).unwrap();
//!
//!    // using structure to generate named bound query arguments
//!    let row1 = Example { id: 1, name: "first name".into() };
//!    connection.execute_named("INSERT INTO example (id, name) VALUES (:id, :name)", &to_params_named(&row1).unwrap().to_slice()).unwrap();
//!
//!    // using tuple to generate positional bound query arguments
//!    let row2 = (2, "second name");
//!    connection.execute("INSERT INTO example (id, name) VALUES (?, ?)", &to_params(&row2).unwrap().to_slice()).unwrap();
//!
//!    // deserializing using query() and from_rows(), the most efficient way
//!    let mut statement = connection.prepare("SELECT * FROM example").unwrap();
//!    let mut res = from_rows::<Example>(statement.query(NO_PARAMS).unwrap());
//!    assert_eq!(res.next().unwrap().unwrap(), row1);
//!    assert_eq!(res.next().unwrap().unwrap(), Example { id: 2, name: "second name".into() });
//!
//!    // deserializing using query_and_then() and from_row(), incurs extra overhead in from_row() call
//!    let mut statement = connection.prepare("SELECT * FROM example").unwrap();
//!    let mut rows = statement.query_and_then(NO_PARAMS, from_row::<Example>).unwrap();
//!    assert_eq!(rows.next().unwrap().unwrap(), row1);
//!    assert_eq!(rows.next().unwrap().unwrap(), Example { id: 2, name: "second name".into() });
//!
//!    // deserializing using query_and_then() and from_row_with_columns(), better performance than from_row()
//!    let mut statement = connection.prepare("SELECT * FROM example").unwrap();
//!    let columns = columns_from_statement(&statement);
//!    let mut rows = statement.query_and_then(NO_PARAMS, |row| from_row_with_columns::<Example>(row, &columns)).unwrap();
//!    assert_eq!(rows.next().unwrap().unwrap(), row1);
//!    assert_eq!(rows.next().unwrap().unwrap(), Example { id: 2, name: "second name".into() });
//!
//!    // deserializing using query() and from_rows_ref()
//!    let mut statement = connection.prepare("SELECT * FROM example").unwrap();
//!    let mut rows = statement.query(NO_PARAMS).unwrap();
//!    {
//!       // only first record is deserialized here
//!       let mut res = from_rows_ref::<Example>(&mut rows);
//!       assert_eq!(res.next().unwrap().unwrap(), row1);
//!    }
//!    // the second record is deserialized using the original Rows iterator
//!    assert_eq!(from_row::<Example>(&rows.next().unwrap().unwrap()).unwrap(), Example { id: 2, name: "second name".into() });
//! }
//! ```

pub use de::{DeserRows, DeserRowsRef, RowDeserializer};
pub use error::{Error, Result};
pub use ser::{NamedParamSlice, NamedSliceSerializer, PositionalParamSlice, PositionalSliceSerializer};

pub mod error;
pub mod de;
pub mod ser;
#[cfg(test)]
mod tests;

/// Returns column names of the statement the way `from_row_with_columns()` method expects them
///
/// This function is needed because by default `column_names()` returns `Vec<&str>` which
/// ties it to the lifetime of the `rusqlite::Statement`. This way we won't be able to run for example
/// `.query_map()` because it mutably borrows `rusqlite::Statement` and by that time it's already borrowed
/// for columns. So this function owns all column names to detach them from the lifetime of `rusqlite::Statement`.
pub fn columns_from_statement(stmt: &rusqlite::Statement) -> Vec<String> {
	stmt.column_names().into_iter().map(str::to_owned).collect()
}

/// Deserializes an instance of `D: serde::Deserialize` from `rusqlite::Row`
///
/// Calling this function incurs allocation and processing overhead because we need to fetch column names from the row.
/// So use with care when calling this function in a loop or check `from_row_with_columns()` to avoid that overhead.
///
/// You should supply this function to `query_map()`.
pub fn from_row<D: serde::de::DeserializeOwned>(row: &rusqlite::Row) -> Result<D> {
	let columns = row.column_names();
	let columns_ref = columns.iter().map(|x| x.to_string()).collect::<Vec<_>>();
	from_row_with_columns(row, &columns_ref)
}

/// Deserializes any instance of `D: serde::Deserialize` from `rusqlite::Row` with specified columns
///
/// Use this function over `from_row()` to avoid allocation and overhead for fetching column names. To get columns names
/// you can use `columns_from_statement()`.
///
/// You should use this function in the closure you supply to `query_map()`.
///
/// Note: `columns` is a slice of owned `String`s to be type compatible with what `columns_from_statement()`
/// returns. Most of the time the result of that function will be used as the argument so it makes little sense
/// to accept something like `&[impl AsRef<str>]` here. It will only make usage of the API less ergonomic. E.g.
/// There will be 2 generic type arguments to the `from_row_with_columns()` instead of one.
pub fn from_row_with_columns<D: serde::de::DeserializeOwned>(row: &rusqlite::Row, columns: &[String]) -> Result<D> {
	D::deserialize(RowDeserializer::from_row_with_columns(row, &columns))
}

/// Returns iterator that owns `rusqlite::Rows` and deserializes all records from it into instances of `D: serde::Deserialize`
///
/// Also see `from_row()` for some specific info.
///
/// This function covers most of the use cases and is easier to use than the alternative `from_rows_ref()`.
pub fn from_rows<D: serde::de::DeserializeOwned>(rows: rusqlite::Rows) -> DeserRows<D> {
	DeserRows::new(rows)
}

/// Returns iterator that borrows `rusqlite::Rows` and deserializes records from it into instances of `D: serde::Deserialize`
///
/// Use this function instead of `from_rows()` when you still need iterator with the remaining rows after deserializing some
/// of them.
pub fn from_rows_ref<'rows, 'stmt, D: serde::de::DeserializeOwned>(rows: &'rows mut rusqlite::Rows<'stmt>) -> DeserRowsRef<'rows, 'stmt, D> {
	DeserRowsRef::new(rows)
}

/// Serializes an instance of `S: serde::Serialize` into structure for positional bound query arguments
///
/// To get the slice suitable for supplying to `query()` or `execute()` call `to_slice()` on the `Ok` result and
/// borrow it.
pub fn to_params<S: serde::Serialize>(obj: S) -> Result<PositionalParamSlice> {
	obj.serialize(PositionalSliceSerializer::new())
}

/// Serializes an instance of `S: serde::Serialize` into structure for named bound query arguments
///
/// To get the slice suitable for supplying to `query_named()` or `execute_named()` call `to_slice()` on the `Ok` result
/// and borrow it.
pub fn to_params_named<S: serde::Serialize>(obj: S) -> Result<NamedParamSlice> {
	obj.serialize(NamedSliceSerializer::new())
}