1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
//! Streaming packet serialization.
//!
//! This interface provides a convenient way to create signed and/or
//! encrypted OpenPGP messages (see [Section 11.3 of RFC 4880]) and is
//! the preferred interface to generate messages using Sequoia.  It
//! takes advantage of OpenPGP's streaming nature to avoid unnecessary
//! buffering.
//!
//!   [Section 11.3 of RFC 4880]: https://tools.ietf.org/html/rfc4880#section-11.3
//!
//! To use this interface, a sink implementing [`io::Write`] is
//! wrapped by [`Message::new`] returning a streaming [`Message`].
//! The writer stack is a structure to compose filters that create the
//! desired message structure.  There are a number of filters that can
//! be freely combined:
//!
//!   - [`Armorer`] applies ASCII-Armor to the stream,
//!   - [`Encryptor`] encrypts data fed into it,
//!   - [`Compressor`] compresses data,
//!   - [`Padder`] pads data,
//!   - [`Signer`] signs data,
//!   - [`LiteralWriter`] wraps literal data (i.e. the payload) into
//!     a literal data packet,
//!   - and finally, [`ArbitraryWriter`] can be used to create
//!     arbitrary packets for testing purposes.
//!
//!   [`io::Write`]: https://doc.rust-lang.org/nightly/std/io/trait.Write.html
//!   [`Message::new`]: struct.Message.html#method.new
//!   [`Message`]: struct.Message.html
//!   [`Armorer`]: struct.Armorer.html
//!   [`Encryptor`]: struct.Encryptor.html
//!   [`Compressor`]: struct.Compressor.html
//!   [`Padder`]: padding/struct.Padder.html
//!   [`Signer`]: struct.Signer.html
//!   [`LiteralWriter`]: struct.LiteralWriter.html
//!   [`ArbitraryWriter`]: struct.ArbitraryWriter.html
//!
//! The most common structure is an optionally encrypted, optionally
//! compressed, and optionally signed message.  This structure is
//! [supported] by all OpenPGP implementations, and applications
//! should only create messages of that structure to increase
//! compatibility.  See the example below on how to create this
//! structure.  This is a sketch of such a message:
//!
//! ```text
//! [ encryption layer: [ compression layer: [ signature group: [ literal data ]]]]
//! ```
//!
//!   [supported]: https://tests.sequoia-pgp.org/#Unusual_Message_Structure
//!
//! # Examples
//!
//! This example demonstrates how to create the simplest possible
//! OpenPGP message (see [Section 11.3 of RFC 4880]) containing just a
//! literal data packet (see [Section 5.9 of RFC 4880]):
//!
//!   [Section 5.9 of RFC 4880]: https://tools.ietf.org/html/rfc4880#section-5.9
//!
//! ```
//! # fn main() -> sequoia_openpgp::Result<()> {
//! use std::io::Write;
//! use sequoia_openpgp as openpgp;
//! use openpgp::serialize::stream::{Message, LiteralWriter};
//!
//! let mut sink = vec![];
//! {
//!     let message = Message::new(&mut sink);
//!     let mut message = LiteralWriter::new(message).build()?;
//!     message.write_all(b"Hello world.")?;
//!     message.finalize()?;
//! }
//! assert_eq!(b"\xcb\x12b\x00\x00\x00\x00\x00Hello world.", sink.as_slice());
//! # Ok(()) }
//! ```
//!
//! This example demonstrates how to create the most common OpenPGP
//! message structure (see [Section 11.3 of RFC 4880]).  The plaintext
//! is first signed, then encrypted, and finally ASCII armored.
//!
//! ```
//! # fn main() -> sequoia_openpgp::Result<()> {
//! use std::io::Write;
//! use sequoia_openpgp as openpgp;
//! use openpgp::policy::StandardPolicy;
//! use openpgp::cert::prelude::*;
//! use openpgp::serialize::stream::{
//!     Message, Armorer, Encryptor, Signer, LiteralWriter,
//! };
//! # use openpgp::parse::Parse;
//!
//! let p = &StandardPolicy::new();
//!
//! let sender: Cert = // ...
//! #     Cert::from_bytes(&include_bytes!(
//! #     "../../tests/data/keys/testy-new-private.pgp")[..])?;
//! let signing_keypair = sender.keys().secret()
//!     .with_policy(p, None).supported().alive().revoked(false).for_signing()
//!     .nth(0).unwrap()
//!     .key().clone().into_keypair()?;
//!
//! let recipient: Cert = // ...
//! #     sender.clone();
//! // Note: One certificate may contain several suitable encryption keys.
//! let recipients =
//!     recipient.keys().with_policy(p, None).supported().alive().revoked(false)
//!     // Or `for_storage_encryption()`, for data at rest.
//!     .for_transport_encryption();
//!
//! # let mut sink = vec![];
//! let message = Message::new(&mut sink);
//! let message = Armorer::new(message).build()?;
//! let message = Encryptor::for_recipients(message, recipients).build()?;
//! // Reduce metadata leakage by concealing the message size.
//! let message = Signer::new(message, signing_keypair)
//!     // Prevent Surreptitious Forwarding.
//!     .add_intended_recipient(&recipient)
//!     .build()?;
//! let mut message = LiteralWriter::new(message).build()?;
//! message.write_all(b"Hello world.")?;
//! message.finalize()?;
//! # Ok(()) }
//! ```

use std::fmt;
use std::io::{self, Write};
use std::time::SystemTime;

use crate::{
    armor,
    crypto,
    Error,
    Fingerprint,
    HashAlgorithm,
    KeyID,
    Result,
    crypto::Password,
    crypto::SessionKey,
    packet::prelude::*,
    packet::signature,
    packet::key,
    cert::prelude::*,
};
use crate::packet::header::CTB;
use crate::packet::header::BodyLength;
use super::{
    Marshal,
};
use crate::types::{
    AEADAlgorithm,
    CompressionAlgorithm,
    CompressionLevel,
    DataFormat,
    SignatureType,
    SymmetricAlgorithm,
};

pub(crate) mod writer;
#[cfg(feature = "compression-deflate")]
pub mod padding;
mod partial_body;
use partial_body::PartialBodyFilter;
mod dash_escape;
use dash_escape::DashEscapeFilter;
mod trim_whitespace;
use trim_whitespace::TrailingWSFilter;


/// Cookie must be public because the writers are.
#[derive(Debug)]
struct Cookie {
    level: usize,
    private: Private,
}

#[derive(Debug)]
enum Private {
    Nothing,
    Signer,
}

impl Cookie {
    fn new(level: usize) -> Self {
        Cookie {
            level,
            private: Private::Nothing,
        }
    }
}

impl Default for Cookie {
    fn default() -> Self {
        Cookie::new(0)
    }
}

/// Streams an OpenPGP message.
///
/// Wraps an [`io::Write`]r for use with the streaming subsystem.  The
/// `Message` is a stack of filters that create the desired message
/// structure.  Literal data must be framed using the
/// [`LiteralWriter`] filter.  Once all the has been written, the
/// `Message` must be finalized using [`Message::finalize`].
///
///   [`io::Write`]: https://doc.rust-lang.org/nightly/std/io/trait.Write.html
///   [`LiteralWriter`]: struct.LiteralWriter.html
///   [`Message::finalize`]: #method.finalize
#[derive(Debug)]
pub struct Message<'a>(writer::BoxStack<'a, Cookie>);
assert_send_and_sync!(Message<'_>);

impl<'a> Message<'a> {
    /// Starts streaming an OpenPGP message.
    ///
    /// # Examples
    ///
    /// ```
    /// # fn main() -> sequoia_openpgp::Result<()> {
    /// use sequoia_openpgp as openpgp;
    /// use openpgp::serialize::stream::{Message, LiteralWriter};
    ///
    /// # let mut sink = vec![]; // Vec<u8> implements io::Write.
    /// let message = Message::new(&mut sink);
    /// // Construct the writer stack here.
    /// let mut message = LiteralWriter::new(message).build()?;
    /// // Write literal data to `message` here.
    /// // ...
    /// // Finalize the message.
    /// message.finalize()?;
    /// # Ok(()) }
    /// ```
    pub fn new<W: 'a + io::Write + Send + Sync>(w: W) -> Message<'a> {
        writer::Generic::new(w, Cookie::new(0))
    }

    /// Finalizes the topmost writer, returning the underlying writer.
    ///
    /// Finalizes the topmost writer, i.e. flushes any buffered data,
    /// and pops it of the stack.  This allows for fine-grained
    /// control of the resulting message, but must be done with great
    /// care.  If done improperly, the resulting message may be
    /// malformed.
    ///
    /// # Examples
    ///
    /// This demonstrates how to create a compressed, signed message
    /// from a detached signature.
    ///
    /// ```
    /// # fn main() -> sequoia_openpgp::Result<()> {
    /// use std::io::Write;
    /// use std::convert::TryFrom;
    /// use sequoia_openpgp as openpgp;
    /// use openpgp::packet::{Packet, Signature, one_pass_sig::OnePassSig3};
    /// # use openpgp::parse::Parse;
    /// use openpgp::serialize::Serialize;
    /// use openpgp::serialize::stream::{Message, Compressor, LiteralWriter};
    ///
    /// let data: &[u8] = // ...
    /// # &include_bytes!(
    /// # "../../tests/data/messages/a-cypherpunks-manifesto.txt")[..];
    /// let sig: Signature = // ...
    /// # if let Packet::Signature(s) = Packet::from_bytes(&include_bytes!(
    /// # "../../tests/data/messages/a-cypherpunks-manifesto.txt.ed25519.sig")[..])?
    /// # { s } else { panic!() };
    ///
    /// # let mut sink = vec![]; // Vec<u8> implements io::Write.
    /// let message = Message::new(&mut sink);
    /// let mut message = Compressor::new(message).build()?;
    ///
    /// // First, write a one-pass-signature packet.
    /// Packet::from(OnePassSig3::try_from(&sig)?)
    ///     .serialize(&mut message)?;
    ///
    /// // Then, add the literal data.
    /// let mut message = LiteralWriter::new(message).build()?;
    /// message.write_all(data)?;
    ///
    /// // Finally, pop the `LiteralWriter` off the stack to write the
    /// // signature.
    /// let mut message = message.finalize_one()?.unwrap();
    /// Packet::from(sig).serialize(&mut message)?;
    ///
    /// // Finalize the message.
    /// message.finalize()?;
    /// # Ok(()) }
    /// ```
    pub fn finalize_one(self) -> Result<Option<Message<'a>>> {
        Ok(self.0.into_inner()?.map(|bs| Self::from(bs)))
    }

    /// Finalizes the message.
    ///
    /// Finalizes all writers on the stack, flushing any buffered
    /// data.
    ///
    /// # Note
    ///
    /// Failing to finalize the message may result in corrupted
    /// messages.
    ///
    /// # Examples
    ///
    /// ```
    /// # fn main() -> sequoia_openpgp::Result<()> {
    /// use sequoia_openpgp as openpgp;
    /// use openpgp::serialize::stream::{Message, LiteralWriter};
    ///
    /// # let mut sink = vec![]; // Vec<u8> implements io::Write.
    /// let message = Message::new(&mut sink);
    /// // Construct the writer stack here.
    /// let mut message = LiteralWriter::new(message).build()?;
    /// // Write literal data to `message` here.
    /// // ...
    /// // Finalize the message.
    /// message.finalize()?;
    /// # Ok(()) }
    /// ```
    pub fn finalize(self) -> Result<()> {
        let mut stack = self;
        while let Some(s) = stack.finalize_one()? {
            stack = s;
        }
        Ok(())
    }
}

impl<'a> From<&'a mut (dyn io::Write + Send + Sync)> for Message<'a> {
    fn from(w: &'a mut (dyn io::Write + Send + Sync)) -> Self {
        writer::Generic::new(w, Cookie::new(0))
    }
}


/// Applies ASCII Armor to the message.
///
/// ASCII armored data (see [Section 6 of RFC 4880]) is a OpenPGP data
/// stream that has been base64-encoded and decorated with a header,
/// footer, and optional headers representing key-value pairs.  It can
/// be safely transmitted over protocols that can only transmit
/// printable characters, and can handled by end users (e.g. copied
/// and pasted).
///
///   [Section 6 of RFC 4880]: https://tools.ietf.org/html/rfc4880#section-6
pub struct Armorer<'a> {
    kind: armor::Kind,
    headers: Vec<(String, String)>,
    inner: Message<'a>,
}
assert_send_and_sync!(Armorer<'_>);

impl<'a> Armorer<'a> {
    /// Creates a new armoring filter.
    ///
    /// By default, the type of the armored data is set to
    /// [`armor::Kind`]`::Message`.  To change it, use
    /// [`Armorer::kind`].  To add headers to the armor, use
    /// [`Armorer::add_header`].
    ///
    ///   [`armor::Kind`]: ../../armor/enum.Kind.html
    ///   [`Armorer::kind`]: #method.kind
    ///   [`Armorer::add_header`]: #method.add_header
    ///
    /// # Examples
    ///
    /// ```
    /// # fn main() -> sequoia_openpgp::Result<()> {
    /// use std::io::Write;
    /// use sequoia_openpgp as openpgp;
    /// use openpgp::serialize::stream::{Message, Armorer, LiteralWriter};
    ///
    /// let mut sink = vec![];
    /// {
    ///     let message = Message::new(&mut sink);
    ///     let message = Armorer::new(message)
    ///         // Customize the `Armorer` here.
    ///         .build()?;
    ///     let mut message = LiteralWriter::new(message).build()?;
    ///     message.write_all(b"Hello world.")?;
    ///     message.finalize()?;
    /// }
    /// assert_eq!("-----BEGIN PGP MESSAGE-----\n\
    ///             \n\
    ///             yxJiAAAAAABIZWxsbyB3b3JsZC4=\n\
    ///             =6nHv\n\
    ///             -----END PGP MESSAGE-----\n",
    ///            std::str::from_utf8(&sink)?);
    /// # Ok(()) }
    pub fn new(inner: Message<'a>) -> Self {
        Self {
            kind: armor::Kind::Message,
            headers: Vec::with_capacity(0),
            inner,
        }
    }

    /// Changes the kind of armoring.
    ///
    /// The armor header and footer changes depending on the type of
    /// wrapped data.  See [`armor::Kind`] for the possible values.
    ///
    ///   [`armor::Kind`]: ../../armor/enum.Kind.html
    ///
    /// # Examples
    ///
    /// ```
    /// # fn main() -> sequoia_openpgp::Result<()> {
    /// use std::io::Write;
    /// use sequoia_openpgp as openpgp;
    /// use openpgp::armor;
    /// use openpgp::serialize::stream::{Message, Armorer, Signer};
    /// # use sequoia_openpgp::policy::StandardPolicy;
    /// # use openpgp::{Result, Cert};
    /// # use openpgp::packet::prelude::*;
    /// # use openpgp::crypto::KeyPair;
    /// # use openpgp::parse::Parse;
    /// # use openpgp::parse::stream::*;
    /// # let p = &StandardPolicy::new();
    /// # let cert = Cert::from_bytes(&include_bytes!(
    /// #     "../../tests/data/keys/testy-new-private.pgp")[..])?;
    /// # let signing_keypair
    /// #     = cert.keys().secret()
    /// #           .with_policy(p, None).alive().revoked(false).for_signing()
    /// #           .nth(0).unwrap()
    /// #           .key().clone().into_keypair()?;
    ///
    /// let mut sink = vec![];
    /// {
    ///     let message = Message::new(&mut sink);
    ///     let message = Armorer::new(message)
    ///         .kind(armor::Kind::Signature)
    ///         .build()?;
    ///     let mut signer = Signer::new(message, signing_keypair)
    ///         .detached()
    ///         .build()?;
    ///
    ///     // Write the data directly to the `Signer`.
    ///     signer.write_all(b"Make it so, number one!")?;
    ///     // In reality, just io::copy() the file to be signed.
    ///     signer.finalize()?;
    /// }
    ///
    /// assert!(std::str::from_utf8(&sink)?
    ///         .starts_with("-----BEGIN PGP SIGNATURE-----\n"));
    /// # Ok(()) }
    pub fn kind(mut self, kind: armor::Kind) -> Self {
        self.kind = kind;
        self
    }

    /// Adds a header to the armor block.
    ///
    /// There are a number of defined armor header keys (see [Section
    /// 6 of RFC 4880]), but in practice, any key may be used, as
    /// implementations should simply ignore unknown keys.
    ///
    ///   [Section 6 of RFC 4880]: https://tools.ietf.org/html/rfc4880#section-6
    ///
    /// # Examples
    ///
    /// ```
    /// # fn main() -> sequoia_openpgp::Result<()> {
    /// use std::io::Write;
    /// use sequoia_openpgp as openpgp;
    /// use openpgp::serialize::stream::{Message, Armorer, LiteralWriter};
    ///
    /// let mut sink = vec![];
    /// {
    ///     let message = Message::new(&mut sink);
    ///     let message = Armorer::new(message)
    ///         .add_header("Comment", "No comment.")
    ///         .build()?;
    ///     let mut message = LiteralWriter::new(message).build()?;
    ///     message.write_all(b"Hello world.")?;
    ///     message.finalize()?;
    /// }
    /// assert_eq!("-----BEGIN PGP MESSAGE-----\n\
    ///             Comment: No comment.\n\
    ///             \n\
    ///             yxJiAAAAAABIZWxsbyB3b3JsZC4=\n\
    ///             =6nHv\n\
    ///             -----END PGP MESSAGE-----\n",
    ///            std::str::from_utf8(&sink)?);
    /// # Ok(()) }
    pub fn add_header<K, V>(mut self, key: K, value: V) -> Self
        where K: AsRef<str>,
              V: AsRef<str>,
    {
        self.headers.push((key.as_ref().to_string(),
                           value.as_ref().to_string()));
        self
    }

    /// Builds the armor writer, returning the writer stack.
    ///
    /// # Examples
    ///
    /// ```
    /// # fn main() -> sequoia_openpgp::Result<()> {
    /// use sequoia_openpgp as openpgp;
    /// use openpgp::serialize::stream::{Message, Armorer, LiteralWriter};
    ///
    /// # let mut sink = vec![];
    /// let message = Message::new(&mut sink);
    /// let message = Armorer::new(message)
    ///     // Customize the `Armorer` here.
    ///     .build()?;
    /// # Ok(()) }
    pub fn build(self) -> Result<Message<'a>> {
        let level = self.inner.as_ref().cookie_ref().level;
        writer::Armorer::new(
            self.inner,
            Cookie::new(level + 1),
            self.kind,
            self.headers,
        )
    }
}

impl<'a> fmt::Debug for Armorer<'a> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("Armorer")
            .field("inner", &self.inner)
            .field("kind", &self.kind)
            .field("headers", &self.headers)
            .finish()
    }
}


/// Writes an arbitrary packet.
///
/// This writer can be used to construct arbitrary OpenPGP packets.
/// This is mainly useful for testing.  The body will be written using
/// partial length encoding, or, if the body is short, using full
/// length encoding.
pub struct ArbitraryWriter<'a> {
    inner: writer::BoxStack<'a, Cookie>,
}
assert_send_and_sync!(ArbitraryWriter<'_>);

impl<'a> ArbitraryWriter<'a> {
    /// Creates a new writer with the given tag.
    ///
    /// # Examples
    ///
    /// ```
    /// # fn main() -> sequoia_openpgp::Result<()> {
    /// use std::io::Write;
    /// use sequoia_openpgp as openpgp;
    /// use openpgp::packet::Tag;
    /// use openpgp::serialize::stream::{Message, ArbitraryWriter};
    ///
    /// let mut sink = vec![];
    /// {
    ///     let message = Message::new(&mut sink);
    ///     let mut message = ArbitraryWriter::new(message, Tag::Literal)?;
    ///     message.write_all(b"t")?;                   // type
    ///     message.write_all(b"\x00")?;                // filename length
    ///     message.write_all(b"\x00\x00\x00\x00")?;    // date
    ///     message.write_all(b"Hello world.")?;        // body
    ///     message.finalize()?;
    /// }
    /// assert_eq!(b"\xcb\x12t\x00\x00\x00\x00\x00Hello world.",
    ///            sink.as_slice());
    /// # Ok(()) }
    pub fn new(mut inner: Message<'a>, tag: Tag)
               -> Result<Message<'a>> {
        let level = inner.as_ref().cookie_ref().level + 1;
        CTB::new(tag).serialize(&mut inner)?;
        Ok(Message::from(Box::new(ArbitraryWriter {
            inner: PartialBodyFilter::new(inner, Cookie::new(level)).into()
        })))
    }
}

impl<'a> fmt::Debug for ArbitraryWriter<'a> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("ArbitraryWriter")
            .field("inner", &self.inner)
            .finish()
    }
}

impl<'a> Write for ArbitraryWriter<'a> {
    fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
        self.inner.write(buf)
    }
    fn flush(&mut self) -> io::Result<()> {
        self.inner.flush()
    }
}

impl<'a> writer::Stackable<'a, Cookie> for ArbitraryWriter<'a> {
    fn into_inner(self: Box<Self>) -> Result<Option<writer::BoxStack<'a, Cookie>>> {
        Box::new(self.inner).into_inner()
    }
    fn pop(&mut self) -> Result<Option<writer::BoxStack<'a, Cookie>>> {
        unreachable!("Only implemented by Signer")
    }
    /// Sets the inner stackable.
    fn mount(&mut self, _new: writer::BoxStack<'a, Cookie>) {
        unreachable!("Only implemented by Signer")
    }
    fn inner_ref(&self) -> Option<&(dyn writer::Stackable<'a, Cookie> + Send + Sync)> {
        Some(self.inner.as_ref())
    }
    fn inner_mut(&mut self) -> Option<&mut (dyn writer::Stackable<'a, Cookie> + Send + Sync)> {
        Some(self.inner.as_mut())
    }
    fn cookie_set(&mut self, cookie: Cookie) -> Cookie {
        self.inner.cookie_set(cookie)
    }
    fn cookie_ref(&self) -> &Cookie {
        self.inner.cookie_ref()
    }
    fn cookie_mut(&mut self) -> &mut Cookie {
        self.inner.cookie_mut()
    }
    fn position(&self) -> u64 {
        self.inner.position()
    }
}

/// Signs a message.
///
/// Signs a message with every [`crypto::Signer`] added to the
/// streaming signer.
///
///   [`crypto::Signer`]: ../../crypto/trait.Signer.html
pub struct Signer<'a> {
    // The underlying writer.
    //
    // Because this writer implements `Drop`, we cannot move the inner
    // writer out of this writer.  We therefore wrap it with `Option`
    // so that we can `take()` it.
    //
    // Furthermore, the LiteralWriter will pop us off the stack, and
    // take our inner reader.  If that happens, we only update the
    // digests.
    inner: Option<writer::BoxStack<'a, Cookie>>,
    signers: Vec<Box<dyn crypto::Signer + Send + Sync + 'a>>,
    intended_recipients: Vec<Fingerprint>,
    mode: SignatureMode,
    template: signature::SignatureBuilder,
    creation_time: Option<SystemTime>,
    hash: Box<dyn crypto::hash::Digest>,
    cookie: Cookie,
    position: u64,

    /// When creating a message using the cleartext signature
    /// framework, the final newline is not part of the signature,
    /// hence, we delay hashing up to two bytes so that we can omit
    /// them when the message is finalized.
    hash_stash: Vec<u8>,
}
assert_send_and_sync!(Signer<'_>);

#[derive(Clone, Copy, Debug, PartialEq, Eq)]
enum SignatureMode {
    Inline,
    Detached,
    Cleartext,
}

impl<'a> Signer<'a> {
    /// Creates a signer.
    ///
    /// Signs the message with the given [`crypto::Signer`].  To
    /// create more than one signature, add more [`crypto::Signer`]s
    /// using [`Signer::add_signer`].  Properties of the signatures
    /// can be tweaked using the methods of this type.  Notably, to
    /// generate a detached signature (see [Section 11.4 of RFC
    /// 4880]), use [`Signer::detached`].  For even more control over
    /// the generated signatures, use [`Signer::with_template`].
    ///
    ///   [`crypto::Signer`]: ../../crypto/trait.Signer.html
    ///   [`Signer::add_signer`]: #method.add_signer
    ///   [Section 11.4 of RFC 4880]: https://tools.ietf.org/html/rfc4880#section-11.4
    ///   [`Signer::detached`]: #method.detached
    ///   [`Signer::with_template`]: #method.with_template
    ///
    /// # Examples
    ///
    /// ```
    /// # fn main() -> sequoia_openpgp::Result<()> {
    /// use std::io::{Read, Write};
    /// use sequoia_openpgp as openpgp;
    /// use openpgp::serialize::stream::{Message, Signer, LiteralWriter};
    /// use openpgp::policy::StandardPolicy;
    /// # use openpgp::{Result, Cert};
    /// # use openpgp::packet::prelude::*;
    /// # use openpgp::parse::Parse;
    /// # use openpgp::parse::stream::*;
    ///
    /// let p = &StandardPolicy::new();
    /// let cert: Cert = // ...
    /// #     Cert::from_bytes(&include_bytes!(
    /// #     "../../tests/data/keys/testy-new-private.pgp")[..])?;
    /// let signing_keypair = cert.keys().secret()
    ///     .with_policy(p, None).supported().alive().revoked(false).for_signing()
    ///     .nth(0).unwrap()
    ///     .key().clone().into_keypair()?;
    ///
    /// let mut sink = vec![];
    /// {
    ///     let message = Message::new(&mut sink);
    ///     let message = Signer::new(message, signing_keypair)
    ///         // Customize the `Signer` here.
    ///         .build()?;
    ///     let mut message = LiteralWriter::new(message).build()?;
    ///     message.write_all(b"Make it so, number one!")?;
    ///     message.finalize()?;
    /// }
    ///
    /// // Now check the signature.
    /// struct Helper<'a>(&'a openpgp::Cert);
    /// impl<'a> VerificationHelper for Helper<'a> {
    ///     fn get_certs(&mut self, _: &[openpgp::KeyHandle])
    ///                        -> openpgp::Result<Vec<openpgp::Cert>> {
    ///         Ok(vec![self.0.clone()])
    ///     }
    ///
    ///     fn check(&mut self, structure: MessageStructure)
    ///              -> openpgp::Result<()> {
    ///         if let MessageLayer::SignatureGroup { ref results } =
    ///             structure.iter().nth(0).unwrap()
    ///         {
    ///             results.get(0).unwrap().as_ref().unwrap();
    ///             Ok(())
    ///         } else { panic!() }
    ///     }
    /// }
    ///
    /// let mut verifier = VerifierBuilder::from_bytes(&sink)?
    ///     .with_policy(p, None, Helper(&cert))?;
    ///
    /// let mut message = String::new();
    /// verifier.read_to_string(&mut message)?;
    /// assert_eq!(&message, "Make it so, number one!");
    /// # Ok(()) }
    /// ```
    pub fn new<S>(inner: Message<'a>, signer: S) -> Self
        where S: crypto::Signer + Send + Sync + 'a
    {
        Self::with_template(inner, signer,
                            signature::SignatureBuilder::new(SignatureType::Binary))
    }

    /// Creates a signer with a given signature template.
    ///
    /// Signs the message with the given [`crypto::Signer`] like
    /// [`Signer::new`], but allows more control over the generated
    /// signatures.  The given [`signature::SignatureBuilder`] is used to
    /// create all the signatures.
    ///
    /// For every signature, the creation time is set to the current
    /// time or the one specified using [`Signer::creation_time`], the
    /// intended recipients are added (see
    /// [`Signer::add_intended_recipient`]), the issuer and issuer
    /// fingerprint subpackets are set according to the signing key,
    /// and the hash algorithm set using [`Signer::hash_algo`] is used
    /// to create the signature.
    ///
    ///   [`crypto::Signer`]: ../../crypto/trait.Signer.html
    ///   [`Signer::new`]: #method.new
    ///   [`signature::SignatureBuilder`]: ../../packet/signature/struct.Builder.html
    ///   [`Signer::creation_time`]: #method.creation_time
    ///   [`Signer::hash_algo`]: #method.hash_algo
    ///   [`Signer::add_intended_recipient`]: #method.add_intended_recipient
    ///
    /// # Examples
    ///
    /// ```
    /// # fn main() -> sequoia_openpgp::Result<()> {
    /// use std::io::{Read, Write};
    /// use sequoia_openpgp as openpgp;
    /// use openpgp::types::SignatureType;
    /// use openpgp::packet::signature;
    /// use openpgp::serialize::stream::{Message, Signer, LiteralWriter};
    /// # use openpgp::policy::StandardPolicy;
    /// # use openpgp::{Result, Cert};
    /// # use openpgp::packet::prelude::*;
    /// # use openpgp::parse::Parse;
    /// # use openpgp::parse::stream::*;
    /// #
    /// # let p = &StandardPolicy::new();
    /// # let cert: Cert = // ...
    /// #     Cert::from_bytes(&include_bytes!(
    /// #     "../../tests/data/keys/testy-new-private.pgp")[..])?;
    /// # let signing_keypair = cert.keys().secret()
    /// #     .with_policy(p, None).supported().alive().revoked(false).for_signing()
    /// #     .nth(0).unwrap()
    /// #     .key().clone().into_keypair()?;
    /// # let mut sink = vec![];
    ///
    /// let message = Message::new(&mut sink);
    /// let message = Signer::with_template(
    ///     message, signing_keypair,
    ///     signature::SignatureBuilder::new(SignatureType::Text)
    ///         .add_notation("issuer@starfleet.command", "Jean-Luc Picard",
    ///                       None, true)?)
    ///     // Further customize the `Signer` here.
    ///     .build()?;
    /// let mut message = LiteralWriter::new(message).build()?;
    /// message.write_all(b"Make it so, number one!")?;
    /// message.finalize()?;
    /// # Ok(()) }
    /// ```
    pub fn with_template<S, T>(inner: Message<'a>, signer: S, template: T)
                               -> Self
        where S: crypto::Signer + Send + Sync + 'a,
              T: Into<signature::SignatureBuilder>,
    {
        let inner = writer::BoxStack::from(inner);
        let level = inner.cookie_ref().level + 1;
        Signer {
            inner: Some(inner),
            signers: vec![Box::new(signer)],
            intended_recipients: Vec::new(),
            mode: SignatureMode::Inline,
            template: template.into(),
            creation_time: None,
            hash: HashAlgorithm::default().context().unwrap(),
            cookie: Cookie {
                level,
                private: Private::Signer,
            },
            position: 0,
            hash_stash: Vec::with_capacity(0),
        }
    }

    /// Creates a signer for a detached signature.
    ///
    /// Changes the `Signer` to create a detached signature (see
    /// [Section 11.4 of RFC 4880]).  Note that the literal data *must
    /// not* be wrapped using the [`LiteralWriter`].
    ///
    /// This overrides any prior call to [`Signer::cleartext`].
    ///
    ///   [Section 11.4 of RFC 4880]: https://tools.ietf.org/html/rfc4880#section-11.4
    ///   [`LiteralWriter`]: ../struct.LiteralWriter.html
    ///   [`Signer::cleartext`]: #method.cleartext
    ///
    /// # Examples
    ///
    /// ```
    /// # fn main() -> sequoia_openpgp::Result<()> {
    /// use std::io::Write;
    /// use sequoia_openpgp as openpgp;
    /// use openpgp::serialize::stream::{Message, Signer};
    /// use openpgp::policy::StandardPolicy;
    /// # use openpgp::{Result, Cert};
    /// # use openpgp::packet::prelude::*;
    /// # use openpgp::crypto::KeyPair;
    /// # use openpgp::parse::Parse;
    /// # use openpgp::parse::stream::*;
    ///
    /// let p = &StandardPolicy::new();
    /// # let cert = Cert::from_bytes(&include_bytes!(
    /// #     "../../tests/data/keys/testy-new-private.pgp")[..])?;
    /// # let signing_keypair
    /// #     = cert.keys().secret()
    /// #           .with_policy(p, None).supported().alive().revoked(false).for_signing()
    /// #           .nth(0).unwrap()
    /// #           .key().clone().into_keypair()?;
    ///
    /// let mut sink = vec![];
    /// {
    ///     let message = Message::new(&mut sink);
    ///     let mut signer = Signer::new(message, signing_keypair)
    ///         .detached()
    ///         // Customize the `Signer` here.
    ///         .build()?;
    ///
    ///     // Write the data directly to the `Signer`.
    ///     signer.write_all(b"Make it so, number one!")?;
    ///     // In reality, just io::copy() the file to be signed.
    ///     signer.finalize()?;
    /// }
    ///
    /// // Now check the signature.
    /// struct Helper<'a>(&'a openpgp::Cert);
    /// impl<'a> VerificationHelper for Helper<'a> {
    ///     fn get_certs(&mut self, _: &[openpgp::KeyHandle])
    ///                        -> openpgp::Result<Vec<openpgp::Cert>> {
    ///         Ok(vec![self.0.clone()])
    ///     }
    ///
    ///     fn check(&mut self, structure: MessageStructure)
    ///              -> openpgp::Result<()> {
    ///         if let MessageLayer::SignatureGroup { ref results } =
    ///             structure.iter().nth(0).unwrap()
    ///         {
    ///             results.get(0).unwrap().as_ref().unwrap();
    ///             Ok(())
    ///         } else { panic!() }
    ///     }
    /// }
    ///
    /// let mut verifier = DetachedVerifierBuilder::from_bytes(&sink)?
    ///     .with_policy(p, None, Helper(&cert))?;
    ///
    /// verifier.verify_bytes(b"Make it so, number one!")?;
    /// # Ok(()) }
    /// ```
    pub fn detached(mut self) -> Self {
        self.mode = SignatureMode::Detached;
        self
    }

    /// Creates a signer for a cleartext signed message.
    ///
    /// Changes the `Signer` to create a cleartext signed message (see
    /// [Section 7 of RFC 4880]).  Note that the literal data *must
    /// not* be wrapped using the [`LiteralWriter`].  This implies
    /// ASCII armored output, *do not* add an [`Armorer`] to the
    /// stack.
    ///
    /// Note:
    ///
    /// - If your message does not end in a newline, creating a signed
    ///   message using the Cleartext Signature Framework will add
    ///   one.
    ///
    /// - The cleartext signature framework does not hash trailing
    ///   whitespace (in this case, space and tab, see [Section 7.1 of
    ///   RFC 4880] for more information).  We align what we emit and
    ///   what is being signed by trimming whitespace off of line
    ///   endings.
    ///
    /// - That means that you can not recover a byte-accurate copy of
    ///   the signed message if your message contains either a line
    ///   with trailing whitespace, or no final newline.  This is a
    ///   limitation of the Cleartext Signature Framework, which is
    ///   not designed to be reversible (see [Section 7 of RFC 4880]).
    ///
    /// This overrides any prior call to [`Signer::detached`].
    ///
    ///   [Section 7 of RFC 4880]: https://tools.ietf.org/html/rfc4880#section-7
    ///   [Section 7.1 of RFC 4880]: https://tools.ietf.org/html/rfc4880#section-7.1
    ///   [`LiteralWriter`]: ../struct.LiteralWriter.html
    ///   [`Armorer`]: ../struct.Armorer.html
    ///   [`Signer::detached`]: #method.detached
    ///
    /// # Examples
    ///
    /// ```
    /// # fn main() -> sequoia_openpgp::Result<()> {
    /// use std::io::{Write, Read};
    /// use sequoia_openpgp as openpgp;
    /// use openpgp::serialize::stream::{Message, Signer};
    /// use openpgp::policy::StandardPolicy;
    /// # use openpgp::{Result, Cert};
    /// # use openpgp::packet::prelude::*;
    /// # use openpgp::crypto::KeyPair;
    /// # use openpgp::parse::Parse;
    /// # use openpgp::parse::stream::*;
    ///
    /// let p = &StandardPolicy::new();
    /// # let cert = Cert::from_bytes(&include_bytes!(
    /// #     "../../tests/data/keys/testy-new-private.pgp")[..])?;
    /// # let signing_keypair
    /// #     = cert.keys().secret()
    /// #           .with_policy(p, None).supported().alive().revoked(false).for_signing()
    /// #           .nth(0).unwrap()
    /// #           .key().clone().into_keypair()?;
    ///
    /// let mut sink = vec![];
    /// {
    ///     let message = Message::new(&mut sink);
    ///     let mut signer = Signer::new(message, signing_keypair)
    ///         .cleartext()
    ///         // Customize the `Signer` here.
    ///         .build()?;
    ///
    ///     // Write the data directly to the `Signer`.
    ///     signer.write_all(b"Make it so, number one!")?;
    ///     // In reality, just io::copy() the file to be signed.
    ///     signer.finalize()?;
    /// }
    ///
    /// // Now check the signature.
    /// struct Helper<'a>(&'a openpgp::Cert);
    /// impl<'a> VerificationHelper for Helper<'a> {
    ///     fn get_certs(&mut self, _: &[openpgp::KeyHandle])
    ///                        -> openpgp::Result<Vec<openpgp::Cert>> {
    ///         Ok(vec![self.0.clone()])
    ///     }
    ///
    ///     fn check(&mut self, structure: MessageStructure)
    ///              -> openpgp::Result<()> {
    ///         if let MessageLayer::SignatureGroup { ref results } =
    ///             structure.iter().nth(0).unwrap()
    ///         {
    ///             results.get(0).unwrap().as_ref().unwrap();
    ///             Ok(())
    ///         } else { panic!() }
    ///     }
    /// }
    ///
    /// let mut verifier = VerifierBuilder::from_bytes(&sink)?
    ///     .with_policy(p, None, Helper(&cert))?;
    ///
    /// let mut content = Vec::new();
    /// verifier.read_to_end(&mut content)?;
    /// assert_eq!(content, b"Make it so, number one!\n");
    /// # Ok(()) }
    /// ```
    //
    // Some notes on the implementation:
    //
    // There are a few pitfalls when implementing the CSF.  We
    // separate concerns as much as possible.
    //
    // - Trailing whitespace must be stripped.  We do this using the
    //   TrailingWSFilter before the data hits this streaming signer.
    //   This filter also adds a final newline, if missing.
    //
    // - We hash what we get from the TrailingWSFilter.
    //
    // - We write into the DashEscapeFilter, which takes care of the
    //   dash-escaping.
    pub fn cleartext(mut self) -> Self {
        self.mode = SignatureMode::Cleartext;
        self
    }

    /// Adds an additional signer.
    ///
    /// Can be used multiple times.
    ///
    /// # Examples
    ///
    /// ```
    /// # fn main() -> sequoia_openpgp::Result<()> {
    /// use std::io::Write;
    /// use sequoia_openpgp as openpgp;
    /// use openpgp::serialize::stream::{Message, Signer, LiteralWriter};
    /// # use openpgp::policy::StandardPolicy;
    /// # use openpgp::{Result, Cert};
    /// # use openpgp::packet::prelude::*;
    /// # use openpgp::parse::Parse;
    /// # use openpgp::parse::stream::*;
    ///
    /// # let p = &StandardPolicy::new();
    /// # let cert = Cert::from_bytes(&include_bytes!(
    /// #     "../../tests/data/keys/testy-new-private.pgp")[..])?;
    /// # let signing_keypair = cert.keys().secret()
    /// #     .with_policy(p, None).supported().alive().revoked(false).for_signing()
    /// #     .nth(0).unwrap()
    /// #     .key().clone().into_keypair()?;
    /// # let additional_signing_keypair = cert.keys().secret()
    /// #     .with_policy(p, None).supported().alive().revoked(false).for_signing()
    /// #     .nth(0).unwrap()
    /// #     .key().clone().into_keypair()?;
    ///
    /// # let mut sink = vec![];
    /// let message = Message::new(&mut sink);
    /// let message = Signer::new(message, signing_keypair)
    ///     .add_signer(additional_signing_keypair)
    ///     .build()?;
    /// let mut message = LiteralWriter::new(message).build()?;
    /// message.write_all(b"Make it so, number one!")?;
    /// message.finalize()?;
    /// # Ok(()) }
    /// ```
    pub fn add_signer<S>(mut self, signer: S) -> Self
        where S: crypto::Signer + Send + Sync + 'a
    {
        self.signers.push(Box::new(signer));
        self
    }

    /// Adds an intended recipient.
    ///
    /// Indicates that the given certificate is an intended recipient
    /// of this message.  Can be used multiple times.  This prevents
    /// [*Surreptitious Forwarding*] of encrypted and signed messages,
    /// i.e. forwarding a signed message using a different encryption
    /// context.
    ///
    ///   [*Surreptitious Forwarding*]: http://world.std.com/~dtd/sign_encrypt/sign_encrypt7.html
    ///
    /// # Examples
    ///
    /// ```
    /// # fn main() -> sequoia_openpgp::Result<()> {
    /// use std::io::Write;
    /// use sequoia_openpgp as openpgp;
    /// use openpgp::serialize::stream::{Message, Signer, LiteralWriter};
    /// # use openpgp::policy::StandardPolicy;
    /// # use openpgp::{Result, Cert};
    /// # use openpgp::packet::prelude::*;
    /// # use openpgp::crypto::KeyPair;
    /// # use openpgp::parse::Parse;
    /// # use openpgp::parse::stream::*;
    ///
    /// # let p = &StandardPolicy::new();
    /// # let cert = Cert::from_bytes(&include_bytes!(
    /// #     "../../tests/data/keys/testy-new-private.pgp")[..])?;
    /// # let signing_keypair = cert.keys().secret()
    /// #     .with_policy(p, None).supported().alive().revoked(false).for_signing()
    /// #     .nth(0).unwrap()
    /// #     .key().clone().into_keypair()?;
    /// let recipient: Cert = // ...
    /// #     Cert::from_bytes(&include_bytes!(
    /// #     "../../tests/data/keys/testy.pgp")[..])?;
    ///
    /// # let mut sink = vec![];
    /// let message = Message::new(&mut sink);
    /// let message = Signer::new(message, signing_keypair)
    ///     .add_intended_recipient(&recipient)
    ///     .build()?;
    /// let mut message = LiteralWriter::new(message).build()?;
    /// message.write_all(b"Make it so, number one!")?;
    /// message.finalize()?;
    /// # Ok(()) }
    /// ```
    pub fn add_intended_recipient(mut self, recipient: &Cert) -> Self {
        self.intended_recipients.push(recipient.fingerprint());
        self
    }

    /// Sets the hash algorithm to use for the signatures.
    ///
    /// # Examples
    ///
    /// ```
    /// # fn main() -> sequoia_openpgp::Result<()> {
    /// use std::io::Write;
    /// use sequoia_openpgp as openpgp;
    /// use openpgp::types::HashAlgorithm;
    /// use openpgp::serialize::stream::{Message, Signer, LiteralWriter};
    /// # use openpgp::policy::StandardPolicy;
    /// # use openpgp::{Result, Cert};
    /// # use openpgp::packet::prelude::*;
    /// # use openpgp::parse::Parse;
    /// # use openpgp::parse::stream::*;
    ///
    /// # let p = &StandardPolicy::new();
    /// # let cert = Cert::from_bytes(&include_bytes!(
    /// #     "../../tests/data/keys/testy-new-private.pgp")[..])?;
    /// # let signing_keypair = cert.keys().secret()
    /// #     .with_policy(p, None).supported().alive().revoked(false).for_signing()
    /// #     .nth(0).unwrap()
    /// #     .key().clone().into_keypair()?;
    ///
    /// # let mut sink = vec![];
    /// let message = Message::new(&mut sink);
    /// let message = Signer::new(message, signing_keypair)
    ///     .hash_algo(HashAlgorithm::SHA384)?
    ///     .build()?;
    /// let mut message = LiteralWriter::new(message).build()?;
    /// message.write_all(b"Make it so, number one!")?;
    /// message.finalize()?;
    /// # Ok(()) }
    /// ```
    pub fn hash_algo(mut self, algo: HashAlgorithm) -> Result<Self> {
        self.hash = algo.context()?;
        Ok(self)
    }

    /// Sets the signature's creation time to `time`.
    ///
    /// Note: it is up to the caller to make sure the signing keys are
    /// actually valid as of `time`.
    ///
    /// # Examples
    ///
    /// ```
    /// # fn main() -> sequoia_openpgp::Result<()> {
    /// use std::io::Write;
    /// use sequoia_openpgp as openpgp;
    /// use openpgp::types::Timestamp;
    /// use openpgp::serialize::stream::{Message, Signer, LiteralWriter};
    /// use openpgp::policy::StandardPolicy;
    /// # use openpgp::{Result, Cert};
    /// # use openpgp::packet::prelude::*;
    /// # use openpgp::parse::Parse;
    /// # use openpgp::parse::stream::*;
    ///
    /// let p = &StandardPolicy::new();
    /// let cert: Cert = // ...
    /// #     Cert::from_bytes(&include_bytes!(
    /// #     "../../tests/data/keys/testy-new-private.pgp")[..])?;
    /// let signing_key = cert.keys().secret()
    ///     .with_policy(p, None).supported().alive().revoked(false).for_signing()
    ///     .nth(0).unwrap()
    ///     .key();
    /// let signing_keypair = signing_key.clone().into_keypair()?;
    ///
    /// # let mut sink = vec![];
    /// let message = Message::new(&mut sink);
    /// let message = Signer::new(message, signing_keypair)
    ///     .creation_time(Timestamp::now()
    ///                    .round_down(None, signing_key.creation_time())?)
    ///     .build()?;
    /// let mut message = LiteralWriter::new(message).build()?;
    /// message.write_all(b"Make it so, number one!")?;
    /// message.finalize()?;
    /// # Ok(()) }
    /// ```
    pub fn creation_time<T: Into<SystemTime>>(mut self, creation_time: T)
                                              -> Self
    {
        self.creation_time = Some(creation_time.into());
        self
    }

    /// Builds the signer, returning the writer stack.
    ///
    /// The most useful filter to push to the writer stack next is the
    /// [`LiteralWriter`].  Note, if you are creating a signed OpenPGP
    /// message (see [Section 11.3 of RFC 4880]), literal data *must*
    /// be wrapped using the [`LiteralWriter`].  On the other hand, if
    /// you are creating a detached signature (see [Section 11.4 of
    /// RFC 4880]), the literal data *must not* be wrapped using the
    /// [`LiteralWriter`].
    ///
    ///   [`LiteralWriter`]: ../struct.LiteralWriter.html
    ///   [Section 11.3 of RFC 4880]: https://tools.ietf.org/html/rfc4880#section-11.3
    ///   [Section 11.4 of RFC 4880]: https://tools.ietf.org/html/rfc4880#section-11.4
    ///
    /// # Examples
    ///
    /// ```
    /// # fn main() -> sequoia_openpgp::Result<()> {
    /// use std::io::Write;
    /// use sequoia_openpgp as openpgp;
    /// use openpgp::types::Timestamp;
    /// use openpgp::serialize::stream::{Message, Signer};
    /// # use openpgp::policy::StandardPolicy;
    /// # use openpgp::{Result, Cert};
    /// # use openpgp::packet::prelude::*;
    /// # use openpgp::parse::Parse;
    /// # use openpgp::parse::stream::*;
    ///
    /// # let p = &StandardPolicy::new();
    /// # let cert: Cert = // ...
    /// #     Cert::from_bytes(&include_bytes!(
    /// #     "../../tests/data/keys/testy-new-private.pgp")[..])?;
    /// # let signing_keypair
    /// #     = cert.keys().secret()
    /// #           .with_policy(p, None).supported().alive().revoked(false).for_signing()
    /// #           .nth(0).unwrap()
    /// #           .key().clone().into_keypair()?;
    /// #
    /// # let mut sink = vec![];
    /// let message = Message::new(&mut sink);
    /// let message = Signer::new(message, signing_keypair)
    ///     // Customize the `Signer` here.
    ///     .build()?;
    /// # Ok(()) }
    /// ```
    pub fn build(mut self) -> Result<Message<'a>>
    {
        assert!(self.signers.len() > 0, "The constructor adds a signer.");
        assert!(self.inner.is_some(), "The constructor adds an inner writer.");

        match self.mode {
            SignatureMode::Inline => {
                // For every key we collected, build and emit a one pass
                // signature packet.
                for (i, keypair) in self.signers.iter().enumerate() {
                    let key = keypair.public();
                    let mut ops = OnePassSig3::new(self.template.typ());
                    ops.set_pk_algo(key.pk_algo());
                    ops.set_hash_algo(self.hash.algo());
                    ops.set_issuer(key.keyid());
                    ops.set_last(i == self.signers.len() - 1);
                    Packet::OnePassSig(ops.into())
                        .serialize(self.inner.as_mut().unwrap())?;
                }
            },
            SignatureMode::Detached => (), // Do nothing.
            SignatureMode::Cleartext => {
                // Cleartext signatures are always text signatures.
                self.template = self.template.set_type(SignatureType::Text);

                // Write the header.
                let mut sink = self.inner.take().unwrap();
                writeln!(sink, "-----BEGIN PGP SIGNED MESSAGE-----")?;
                writeln!(sink, "Hash: {}", self.hash.algo().text_name()?)?;
                writeln!(sink)?;

                // We now install two filters.  See the comment on
                // Signer::cleartext.

                // Install the filter dash-escaping the text below us.
                self.inner =
                    Some(writer::BoxStack::from(
                        DashEscapeFilter::new(Message::from(sink),
                                              Default::default())));

                // Install the filter trimming the trailing whitespace
                // above us.
                return Ok(TrailingWSFilter::new(Message::from(Box::new(self)),
                                                Default::default()));
            },
        }

        Ok(Message::from(Box::new(self)))
    }

    fn emit_signatures(&mut self) -> Result<()> {
        if self.mode == SignatureMode::Cleartext {
            // Pop off the DashEscapeFilter.
            let inner = self.inner.take().expect("It's the DashEscapeFilter")
                .into_inner()?.expect("It's the DashEscapeFilter");

            // And install an armorer.
            self.inner =
                Some(writer::BoxStack::from(
                    writer::Armorer::new(Message::from(inner),
                                         Default::default(),
                                         armor::Kind::Signature,
                                         Option::<(&str, &str)>::None)?));
        }

        if let Some(ref mut sink) = self.inner {
            // Emit the signatures in reverse, so that the
            // one-pass-signature and signature packets "bracket" the
            // message.
            for signer in self.signers.iter_mut() {
                // Part of the signature packet is hashed in,
                // therefore we need to clone the hash.
                let hash = self.hash.clone();

                // Make and hash a signature packet.
                let mut sig = self.template.clone()
                    .set_signature_creation_time(
                        self.creation_time
                            .unwrap_or_else(SystemTime::now))?;

                if ! self.intended_recipients.is_empty() {
                    sig = sig.set_intended_recipients(
                        self.intended_recipients.clone())?;
                }

                // Compute the signature.
                let sig = sig.sign_hash(signer.as_mut(), hash)?;

                // And emit the packet.
                Packet::Signature(sig).serialize(sink)?;
            }
        }
        Ok(())
    }
}

impl<'a> fmt::Debug for Signer<'a> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("Signer")
            .field("inner", &self.inner)
            .field("cookie", &self.cookie)
            .field("mode", &self.mode)
            .finish()
    }
}

impl<'a> Write for Signer<'a> {
    fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
        // Shortcut empty writes.  This is important for the code
        // below that delays hashing newlines when creating cleartext
        // signed messages.
        if buf.len() == 0 {
            return Ok(0);
        }

        use SignatureMode::*;
        let written = match (self.inner.as_mut(), self.mode) {
            // If we are creating a normal signature, pass data
            // through.
            (Some(ref mut w), Inline) => w.write(buf),
            // If we are creating a detached signature, just hash all
            // bytes.
            (Some(_), Detached) => Ok(buf.len()),
            // If we are creating a cleartext signed message, just
            // write through (the DashEscapeFilter takes care of the
            // encoding), and hash all bytes as is.
            (Some(ref mut w), Cleartext) => w.write(buf),
            // When we are popped off the stack, we have no inner
            // writer.  Just hash all bytes.
            (None, _) => Ok(buf.len()),
        };

        if let Ok(amount) = written {
            let data = &buf[..amount];

            if self.mode == Cleartext {
                // Delay hashing the last two bytes, because we the
                // final newline is not part of the signature (see
                // Section 7.1 of RFC4880).

                // First, hash the stashed bytes.  We know that it is
                // a newline, but we know that more text follows (buf
                // is not empty), so it cannot be the last.
                assert!(! buf.is_empty());
                crate::parse::hash_update_text(&mut self.hash,
                                               &self.hash_stash[..]);
                crate::vec_truncate(&mut self.hash_stash, 0);

                // Compute the length of data that should be hashed.
                // If it ends in a newline, we delay hashing it.
                let l = data.len() - if data.ends_with(b"\r\n") {
                    2
                } else if data.ends_with(b"\n") {
                    1
                } else {
                    0
                };

                // XXX: This logic breaks if we get a b"\r\n" in two
                // writes.  However, TrailingWSFilter will only emit
                // b"\r\n" in one write.

                // Hash everything but the last newline now.
                crate::parse::hash_update_text(&mut self.hash, &data[..l]);
                // The newline we stash away.  If more text is written
                // later, we will hash it then.  Otherwise, it is
                // implicitly omitted when the signer is finalized.
                self.hash_stash.extend_from_slice(&data[l..]);
            } else {
                if self.template.typ() == SignatureType::Text {
                    crate::parse::hash_update_text(&mut self.hash, data);
                } else {
                    self.hash.update(data);
                }
            }
            self.position += amount as u64;
        }

        written
    }

    fn flush(&mut self) -> io::Result<()> {
        match self.inner.as_mut() {
            Some(ref mut w) => w.flush(),
            // When we are popped off the stack, we have no inner
            // writer.  Just do nothing.
            None => Ok(()),
        }
    }
}

impl<'a> writer::Stackable<'a, Cookie> for Signer<'a> {
    fn pop(&mut self) -> Result<Option<writer::BoxStack<'a, Cookie>>> {
        Ok(self.inner.take())
    }
    fn mount(&mut self, new: writer::BoxStack<'a, Cookie>) {
        self.inner = Some(new);
    }
    fn inner_mut(&mut self) -> Option<&mut (dyn writer::Stackable<'a, Cookie> + Send + Sync)> {
        if let Some(ref mut i) = self.inner {
            Some(i)
        } else {
            None
        }
    }
    fn inner_ref(&self) -> Option<&(dyn writer::Stackable<'a, Cookie> + Send + Sync)> {
        self.inner.as_ref().map(|r| r.as_ref())
    }
    fn into_inner(mut self: Box<Self>)
                  -> Result<Option<writer::BoxStack<'a, Cookie>>> {
        self.emit_signatures()?;
        Ok(self.inner.take())
    }
    fn cookie_set(&mut self, cookie: Cookie) -> Cookie {
        ::std::mem::replace(&mut self.cookie, cookie)
    }
    fn cookie_ref(&self) -> &Cookie {
        &self.cookie
    }
    fn cookie_mut(&mut self) -> &mut Cookie {
        &mut self.cookie
    }
    fn position(&self) -> u64 {
        self.position
    }
}


/// Writes a literal data packet.
///
/// Literal data, i.e. the payload or plaintext, must be wrapped in a
/// literal data packet to be transported over OpenPGP (see [Section
/// 5.9 of RFC 4880]).  The body will be written using partial length
/// encoding, or, if the body is short, using full length encoding.
///
///   [Section 5.9 of RFC 4880]: https://tools.ietf.org/html/rfc4880#section-5.9
///
/// # Note on metadata
///
/// A literal data packet can communicate some metadata: a hint as to
/// what kind of data is transported, the original file name, and a
/// timestamp.  Note that this metadata will not be authenticated by
/// signatures (but will be authenticated by a SEIP/MDC container),
/// and are therefore unreliable and should not be trusted.
///
/// Therefore, it is good practice not to set this metadata when
/// creating a literal data packet, and not to interpret it when
/// consuming one.
pub struct LiteralWriter<'a> {
    template: Literal,
    inner: writer::BoxStack<'a, Cookie>,
    signature_writer: Option<writer::BoxStack<'a, Cookie>>,
}
assert_send_and_sync!(LiteralWriter<'_>);

impl<'a> LiteralWriter<'a> {
    /// Creates a new literal writer.
    ///
    /// # Examples
    ///
    /// ```
    /// # fn main() -> sequoia_openpgp::Result<()> {
    /// use std::io::Write;
    /// use sequoia_openpgp as openpgp;
    /// use openpgp::serialize::stream::{Message, LiteralWriter};
    ///
    /// let mut sink = vec![];
    /// {
    ///     let message = Message::new(&mut sink);
    ///     let mut message = LiteralWriter::new(message)
    ///         // Customize the `LiteralWriter` here.
    ///         .build()?;
    ///     message.write_all(b"Hello world.")?;
    ///     message.finalize()?;
    /// }
    /// assert_eq!(b"\xcb\x12b\x00\x00\x00\x00\x00Hello world.",
    ///            sink.as_slice());
    /// # Ok(()) }
    /// ```
    pub fn new(inner: Message<'a>) -> Self {
        LiteralWriter {
            template: Literal::new(DataFormat::default()),
            inner: writer::BoxStack::from(inner),
            signature_writer: None,
        }
    }

    /// Sets the data format.
    ///
    /// # Examples
    ///
    /// ```
    /// # fn main() -> sequoia_openpgp::Result<()> {
    /// use std::io::Write;
    /// use sequoia_openpgp as openpgp;
    /// use openpgp::types::DataFormat;
    /// use openpgp::serialize::stream::{Message, LiteralWriter};
    ///
    /// let mut sink = vec![];
    /// {
    ///     let message = Message::new(&mut sink);
    ///     let mut message = LiteralWriter::new(message)
    ///         .format(DataFormat::Text)
    ///         .build()?;
    ///     message.write_all(b"Hello world.")?;
    ///     message.finalize()?;
    /// }
    /// assert_eq!(b"\xcb\x12t\x00\x00\x00\x00\x00Hello world.",
    ///            sink.as_slice());
    /// # Ok(()) }
    /// ```
    pub fn format(mut self, format: DataFormat) -> Self {
        self.template.set_format(format);
        self
    }

    /// Sets the filename.
    ///
    /// The standard does not specify the encoding.  Filenames must
    /// not be longer than 255 bytes.  Returns an error if the given
    /// name is longer than that.
    ///
    /// # Examples
    ///
    /// ```
    /// # fn main() -> sequoia_openpgp::Result<()> {
    /// use std::io::Write;
    /// use sequoia_openpgp as openpgp;
    /// use openpgp::serialize::stream::{Message, LiteralWriter};
    ///
    /// let mut sink = vec![];
    /// {
    ///     let message = Message::new(&mut sink);
    ///     let mut message = LiteralWriter::new(message)
    ///         .filename("foobar")?
    ///         .build()?;
    ///     message.write_all(b"Hello world.")?;
    ///     message.finalize()?;
    /// }
    /// assert_eq!(b"\xcb\x18b\x06foobar\x00\x00\x00\x00Hello world.",
    ///            sink.as_slice());
    /// # Ok(()) }
    /// ```
    pub fn filename<B: AsRef<[u8]>>(mut self, filename: B) -> Result<Self> {
        self.template.set_filename(filename.as_ref())?;
        Ok(self)
    }

    /// Sets the date.
    ///
    /// This date may be the modification date or the creation date.
    /// Returns an error if the given date is not representable by
    /// OpenPGP.
    ///
    /// # Examples
    ///
    /// ```
    /// # fn main() -> sequoia_openpgp::Result<()> {
    /// use std::io::Write;
    /// use sequoia_openpgp as openpgp;
    /// use openpgp::types::Timestamp;
    /// use openpgp::serialize::stream::{Message, LiteralWriter};
    ///
    /// let mut sink = vec![];
    /// {
    ///     let message = Message::new(&mut sink);
    ///     let mut message = LiteralWriter::new(message)
    ///         .date(Timestamp::from(1585925313))?
    ///         .build()?;
    ///     message.write_all(b"Hello world.")?;
    ///     message.finalize()?;
    /// }
    /// assert_eq!(b"\xcb\x12b\x00\x5e\x87\x4c\xc1Hello world.",
    ///            sink.as_slice());
    /// # Ok(()) }
    /// ```
    pub fn date<T: Into<SystemTime>>(mut self, timestamp: T) -> Result<Self>
    {
        self.template.set_date(Some(timestamp.into()))?;
        Ok(self)
    }

    /// Builds the literal writer, returning the writer stack.
    ///
    /// The next step is to write the payload to the writer stack.
    ///
    /// # Examples
    ///
    /// ```
    /// # fn main() -> sequoia_openpgp::Result<()> {
    /// use std::io::Write;
    /// use sequoia_openpgp as openpgp;
    /// use openpgp::serialize::stream::{Message, LiteralWriter};
    ///
    /// let mut sink = vec![];
    /// {
    ///     let message = Message::new(&mut sink);
    ///     let mut message = LiteralWriter::new(message)
    ///         // Customize the `LiteralWriter` here.
    ///         .build()?;
    ///     message.write_all(b"Hello world.")?;
    ///     message.finalize()?;
    /// }
    /// assert_eq!(b"\xcb\x12b\x00\x00\x00\x00\x00Hello world.",
    ///            sink.as_slice());
    /// # Ok(()) }
    /// ```
    pub fn build(mut self) -> Result<Message<'a>> {
        let level = self.inner.cookie_ref().level + 1;

        // For historical reasons, signatures over literal data
        // packets only include the body without metadata or framing.
        // Therefore, we check whether the writer is a
        // Signer, and if so, we pop it off the stack and
        // store it in 'self.signature_writer'.
        let signer_above =
            if let &Cookie {
                private: Private::Signer{..},
                ..
            } = self.inner.cookie_ref() {
                true
            } else {
                false
            };

        if signer_above {
            let stack = self.inner.pop()?;
            // We know a signer has an inner stackable.
            let stack = stack.unwrap();
            self.signature_writer = Some(self.inner);
            self.inner = stack;
        }

        // Not hashed by the signature_writer (see above).
        CTB::new(Tag::Literal).serialize(&mut self.inner)?;

        // Neither is any framing added by the PartialBodyFilter.
        self.inner
            = PartialBodyFilter::new(Message::from(self.inner),
                                     Cookie::new(level)).into();

        // Nor the headers.
        self.template.serialize_headers(&mut self.inner, false)?;

        Ok(Message::from(Box::new(self)))
    }
}

impl<'a> fmt::Debug for LiteralWriter<'a> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("LiteralWriter")
            .field("inner", &self.inner)
            .finish()
    }
}

impl<'a> Write for LiteralWriter<'a> {
    fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
        let written = self.inner.write(buf);

        // Any successful written bytes needs to be hashed too.
        if let (&Ok(ref amount), &mut Some(ref mut sig))
            = (&written, &mut self.signature_writer) {
                sig.write_all(&buf[..*amount])?;
            };
        written
    }

    fn flush(&mut self) -> io::Result<()> {
        self.inner.flush()
    }
}

impl<'a> writer::Stackable<'a, Cookie> for LiteralWriter<'a> {
    fn into_inner(mut self: Box<Self>)
                  -> Result<Option<writer::BoxStack<'a, Cookie>>> {
        let signer = self.signature_writer.take();
        let stack = self.inner
            .into_inner()?.unwrap(); // Peel off the PartialBodyFilter.

        if let Some(mut signer) = signer {
            // We stashed away a Signer.  Reattach it to the
            // stack and return it.
            signer.mount(stack);
            Ok(Some(signer))
        } else {
            Ok(Some(stack))
        }
    }

    fn pop(&mut self) -> Result<Option<writer::BoxStack<'a, Cookie>>> {
        unreachable!("Only implemented by Signer")
    }
    /// Sets the inner stackable.
    fn mount(&mut self, _new: writer::BoxStack<'a, Cookie>) {
        unreachable!("Only implemented by Signer")
    }
    fn inner_ref(&self) -> Option<&(dyn writer::Stackable<'a, Cookie> + Send + Sync)> {
        Some(self.inner.as_ref())
    }
    fn inner_mut(&mut self) -> Option<&mut (dyn writer::Stackable<'a, Cookie> + Send + Sync)> {
        Some(self.inner.as_mut())
    }
    fn cookie_set(&mut self, cookie: Cookie) -> Cookie {
        self.inner.cookie_set(cookie)
    }
    fn cookie_ref(&self) -> &Cookie {
        self.inner.cookie_ref()
    }
    fn cookie_mut(&mut self) -> &mut Cookie {
        self.inner.cookie_mut()
    }
    fn position(&self) -> u64 {
        self.inner.position()
    }
}

/// Compresses a message.
///
/// Writes a compressed data packet containing all packets written to
/// this writer.
pub struct Compressor<'a> {
    algo: CompressionAlgorithm,
    level: CompressionLevel,
    inner: writer::BoxStack<'a, Cookie>,
}
assert_send_and_sync!(Compressor<'_>);

impl<'a> Compressor<'a> {
    /// Creates a new compressor using the default algorithm and
    /// compression level.
    ///
    /// To change the compression algorithm use [`Compressor::algo`].
    /// Use [`Compressor::level`] to change the compression level.
    ///
    ///   [`Compressor::algo`]: #method.algo
    ///   [`Compressor::level`]: #method.level
    ///
    /// # Examples
    ///
    /// ```
    /// # fn main() -> sequoia_openpgp::Result<()> {
    /// use std::io::Write;
    /// use sequoia_openpgp as openpgp;
    /// use openpgp::serialize::stream::{Message, Compressor, LiteralWriter};
    /// use openpgp::types::CompressionAlgorithm;
    ///
    /// # let mut sink = vec![];
    /// let message = Message::new(&mut sink);
    /// let message = Compressor::new(message)
    ///     // Customize the `Compressor` here.
    /// #   .algo(CompressionAlgorithm::Uncompressed)
    ///     .build()?;
    /// let mut message = LiteralWriter::new(message).build()?;
    /// message.write_all(b"Hello world.")?;
    /// message.finalize()?;
    /// # Ok(()) }
    /// ```
    pub fn new(inner: Message<'a>) -> Self {
        Self {
            algo: Default::default(),
            level: Default::default(),
            inner: inner.into(),
        }
    }

    /// Sets the compression algorithm.
    ///
    /// # Examples
    ///
    /// ```
    /// # fn main() -> sequoia_openpgp::Result<()> {
    /// use std::io::Write;
    /// use sequoia_openpgp as openpgp;
    /// use openpgp::serialize::stream::{Message, Compressor, LiteralWriter};
    /// use openpgp::types::CompressionAlgorithm;
    ///
    /// let mut sink = vec![];
    /// {
    ///     let message = Message::new(&mut sink);
    ///     let message = Compressor::new(message)
    ///         .algo(CompressionAlgorithm::Uncompressed)
    ///         .build()?;
    ///     let mut message = LiteralWriter::new(message).build()?;
    ///     message.write_all(b"Hello world.")?;
    ///     message.finalize()?;
    /// }
    /// assert_eq!(b"\xc8\x15\x00\xcb\x12b\x00\x00\x00\x00\x00Hello world.",
    ///            sink.as_slice());
    /// # Ok(()) }
    /// ```
    pub fn algo(mut self, algo: CompressionAlgorithm) -> Self {
        self.algo = algo;
        self
    }

    /// Sets the compression level.
    ///
    /// # Examples
    ///
    /// ```
    /// # fn main() -> sequoia_openpgp::Result<()> {
    /// use std::io::Write;
    /// use sequoia_openpgp as openpgp;
    /// use openpgp::serialize::stream::{Message, Compressor, LiteralWriter};
    /// use openpgp::types::{CompressionAlgorithm, CompressionLevel};
    ///
    /// # let mut sink = vec![];
    /// let message = Message::new(&mut sink);
    /// let message = Compressor::new(message)
    /// #   .algo(CompressionAlgorithm::Uncompressed)
    ///     .level(CompressionLevel::fastest())
    ///     .build()?;
    /// let mut message = LiteralWriter::new(message).build()?;
    /// message.write_all(b"Hello world.")?;
    /// message.finalize()?;
    /// # Ok(()) }
    /// ```
    pub fn level(mut self, level: CompressionLevel) -> Self {
        self.level = level;
        self
    }

    /// Builds the compressor, returning the writer stack.
    ///
    /// The most useful filter to push to the writer stack next is the
    /// [`Signer`] or the [`LiteralWriter`].  Finally, literal data
    /// *must* be wrapped using the [`LiteralWriter`].
    ///
    ///   [`Signer`]: struct.Signer.html
    ///   [`LiteralWriter`]: struct.LiteralWriter.html
    ///
    /// # Examples
    ///
    /// ```
    /// # fn main() -> sequoia_openpgp::Result<()> {
    /// use std::io::Write;
    /// use sequoia_openpgp as openpgp;
    /// use openpgp::serialize::stream::{Message, Compressor, LiteralWriter};
    /// use openpgp::types::CompressionAlgorithm;
    ///
    /// # let mut sink = vec![];
    /// let message = Message::new(&mut sink);
    /// let message = Compressor::new(message)
    ///     // Customize the `Compressor` here.
    /// #   .algo(CompressionAlgorithm::Uncompressed)
    ///     .build()?;
    /// let mut message = LiteralWriter::new(message).build()?;
    /// message.write_all(b"Hello world.")?;
    /// message.finalize()?;
    /// # Ok(()) }
    /// ```
    pub fn build(mut self) -> Result<Message<'a>> {
        let level = self.inner.cookie_ref().level + 1;

        // Packet header.
        CTB::new(Tag::CompressedData).serialize(&mut self.inner)?;
        let inner: Message<'a>
            = PartialBodyFilter::new(Message::from(self.inner),
                                     Cookie::new(level));

        Self::new_naked(inner, self.algo, self.level, level)
    }


    /// Creates a new compressor using the given algorithm.
    pub(crate) // For CompressedData::serialize.
    fn new_naked(mut inner: Message<'a>,
                 algo: CompressionAlgorithm,
                 compression_level: CompressionLevel,
                 level: usize)
                 -> Result<Message<'a>>
    {
        // Compressed data header.
        inner.as_mut().write_u8(algo.into())?;

        // Create an appropriate filter.
        let inner: Message<'a> = match algo {
            CompressionAlgorithm::Uncompressed => {
                // Avoid warning about unused value if compiled
                // without any compression support.
                let _ = compression_level;
                writer::Identity::new(inner, Cookie::new(level))
            },
            #[cfg(feature = "compression-deflate")]
            CompressionAlgorithm::Zip =>
                writer::ZIP::new(inner, Cookie::new(level), compression_level),
            #[cfg(feature = "compression-deflate")]
            CompressionAlgorithm::Zlib =>
                writer::ZLIB::new(inner, Cookie::new(level), compression_level),
            #[cfg(feature = "compression-bzip2")]
            CompressionAlgorithm::BZip2 =>
                writer::BZ::new(inner, Cookie::new(level), compression_level),
            a =>
                return Err(Error::UnsupportedCompressionAlgorithm(a).into()),
        };

        Ok(Message::from(Box::new(Self {
            algo,
            level: compression_level,
            inner: inner.into(),
        })))
    }
}

impl<'a> fmt::Debug for Compressor<'a> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("Compressor")
            .field("inner", &self.inner)
            .finish()
    }
}

impl<'a> io::Write for Compressor<'a> {
    fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
        self.inner.write(buf)
    }

    fn flush(&mut self) -> io::Result<()> {
        self.inner.flush()
    }
}

impl<'a> writer::Stackable<'a, Cookie> for Compressor<'a> {
    fn into_inner(self: Box<Self>) -> Result<Option<writer::BoxStack<'a, Cookie>>> {
        Box::new(self.inner).into_inner()?.unwrap().into_inner()
    }
    fn pop(&mut self) -> Result<Option<writer::BoxStack<'a, Cookie>>> {
        unreachable!("Only implemented by Signer")
    }
    /// Sets the inner stackable.
    fn mount(&mut self, _new: writer::BoxStack<'a, Cookie>) {
        unreachable!("Only implemented by Signer")
    }
    fn inner_ref(&self) -> Option<&(dyn writer::Stackable<'a, Cookie> + Send + Sync)> {
        Some(self.inner.as_ref())
    }
    fn inner_mut(&mut self) -> Option<&mut (dyn writer::Stackable<'a, Cookie> + Send + Sync)> {
        Some(self.inner.as_mut())
    }
    fn cookie_set(&mut self, cookie: Cookie) -> Cookie {
        self.inner.cookie_set(cookie)
    }
    fn cookie_ref(&self) -> &Cookie {
        self.inner.cookie_ref()
    }
    fn cookie_mut(&mut self) -> &mut Cookie {
        self.inner.cookie_mut()
    }
    fn position(&self) -> u64 {
        self.inner.position()
    }
}

/// A recipient of an encrypted message.
///
/// OpenPGP messages are encrypted with the subkeys of recipients,
/// identified by the keyid of said subkeys in the [`recipient`] field
/// of [`PKESK`] packets (see [Section 5.1 of RFC 4880]).  The keyid
/// may be a wildcard (as returned by [`KeyID::wildcard()`]) to
/// obscure the identity of the recipient.
///
///   [`recipient`]: ../../packet/enum.PKESK.html#method.recipient
///   [`PKESK`]: ../../packet/enum.PKESK.html
///   [Section 5.1 of RFC 4880]: https://tools.ietf.org/html/rfc4880#section-5.1
///   [`KeyID::wildcard()`]: ../../../struct.KeyID.html#method.wildcard
///
/// Note that several subkeys in a certificate may be suitable
/// encryption subkeys.  OpenPGP does not specify what should happen
/// in this case.  Some implementations arbitrarily pick one
/// encryption subkey, while others use all of them.  This crate does
/// not dictate a policy, but allows for arbitrary policies.  We do,
/// however, suggest to encrypt to all suitable subkeys.
#[derive(Debug)]
pub struct Recipient<'a> {
    keyid: KeyID,
    key: &'a Key<key::PublicParts, key::UnspecifiedRole>,
}
assert_send_and_sync!(Recipient<'_>);

impl<'a, P, R> From<&'a Key<P, R>> for Recipient<'a>
    where P: key::KeyParts,
          R: key::KeyRole,
{
    fn from(key: &'a Key<P, R>) -> Self {
        Self::new(key.keyid(), key.parts_as_public().role_as_unspecified())
    }
}

impl<'a, P, R, R2> From<ValidKeyAmalgamation<'a, P, R, R2>>
    for Recipient<'a>
    where P: key::KeyParts,
          R: key::KeyRole,
          R2: Copy,
{
    fn from(ka: ValidKeyAmalgamation<'a, P, R, R2>) -> Self {
        ka.key().into()
    }
}

impl<'a> Recipient<'a> {
    /// Creates a new recipient with an explicit recipient keyid.
    ///
    /// Note: If you don't want to change the recipient keyid,
    /// `Recipient`s can be created from [`Key`] and
    /// [`ValidKeyAmalgamation`] using [`From`].
    ///
    ///   [`Key`]: ../../packet/enum.Key.html
    ///   [`ValidKeyAmalgamation`]: ../../cert/amalgamation/key/struct.ValidKeyAmalgamation.html
    ///   [`From`]: https://doc.rust-lang.org/std/convert/trait.From.html
    ///
    /// # Examples
    ///
    /// ```
    /// # fn main() -> sequoia_openpgp::Result<()> {
    /// use std::io::Write;
    /// use sequoia_openpgp as openpgp;
    /// use openpgp::cert::prelude::*;
    /// use openpgp::serialize::stream::{
    ///     Recipient, Message, Encryptor,
    /// };
    /// use openpgp::policy::StandardPolicy;
    /// # use openpgp::parse::Parse;
    ///
    /// let p = &StandardPolicy::new();
    ///
    /// let cert = Cert::from_bytes(
    /// #   // We do some acrobatics here to abbreviate the Cert.
    ///     "-----BEGIN PGP PUBLIC KEY BLOCK-----
    ///
    ///      xjMEWlNvABYJKwYBBAHaRw8BAQdA+EC2pvebpEbzPA9YplVgVXzkIG5eK+7wEAez
    /// #    lcBgLJrNMVRlc3R5IE1jVGVzdGZhY2UgKG15IG5ldyBrZXkpIDx0ZXN0eUBleGFt
    /// #    cGxlLm9yZz7CkAQTFggAOBYhBDnRAKtn1b2MBAECBfs3UfFYfa7xBQJaU28AAhsD
    /// #    BQsJCAcCBhUICQoLAgQWAgMBAh4BAheAAAoJEPs3UfFYfa7xJHQBAO4/GABMWUcJ
    /// #    5D/DZ9b+6YiFnysSjCT/gILJgxMgl7uoAPwJherI1pAAh49RnPHBR1IkWDtwzX65
    /// #    CJG8sDyO2FhzDs44BFpTbwASCisGAQQBl1UBBQEBB0B+A0GRHuBgdDX50T1nePjb
    /// #    mKQ5PeqXJbWEtVrUtVJaPwMBCAfCeAQYFggAIBYhBDnRAKtn1b2MBAECBfs3UfFY
    /// #    fa7xBQJaU28AAhsMAAoJEPs3UfFYfa7xzjIBANX2/FgDX3WkmvwpEHg/sn40zACM
    /// #    W2hrBY5x0sZ8H7JlAP47mCfCuRVBqyaePuzKbxLJeLe2BpDdc0n2izMVj8t9Cg==
    /// #    =QetZ
    /// #    -----END PGP PUBLIC KEY BLOCK-----"
    /// #    /*
    ///      ...
    ///      -----END PGP PUBLIC KEY BLOCK-----"
    /// #    */
    /// )?;
    ///
    /// let recipients =
    ///     cert.keys().with_policy(p, None).supported().alive().revoked(false)
    ///     // Or `for_storage_encryption()`, for data at rest.
    ///     .for_transport_encryption()
    ///     .map(|ka| Recipient::new(ka.key().keyid(), ka.key()));
    ///
    /// # let mut sink = vec![];
    /// let message = Message::new(&mut sink);
    /// let message = Encryptor::for_recipients(message, recipients).build()?;
    /// # let _ = message;
    /// # Ok(()) }
    /// ```
    pub fn new<P, R>(keyid: KeyID, key: &'a Key<P, R>) -> Recipient<'a>
        where P: key::KeyParts,
              R: key::KeyRole,
    {
        Recipient {
            keyid,
            key: key.parts_as_public().role_as_unspecified(),
        }
    }

    /// Gets the recipient keyid.
    ///
    /// # Examples
    ///
    /// ```
    /// # fn main() -> sequoia_openpgp::Result<()> {
    /// use std::io::Write;
    /// use sequoia_openpgp as openpgp;
    /// use openpgp::cert::prelude::*;
    /// use openpgp::serialize::stream::Recipient;
    /// use openpgp::policy::StandardPolicy;
    /// # use openpgp::parse::Parse;
    ///
    /// let p = &StandardPolicy::new();
    ///
    /// let cert = Cert::from_bytes(
    /// #   // We do some acrobatics here to abbreviate the Cert.
    ///     "-----BEGIN PGP PUBLIC KEY BLOCK-----
    ///
    ///      xjMEWlNvABYJKwYBBAHaRw8BAQdA+EC2pvebpEbzPA9YplVgVXzkIG5eK+7wEAez
    /// #    lcBgLJrNMVRlc3R5IE1jVGVzdGZhY2UgKG15IG5ldyBrZXkpIDx0ZXN0eUBleGFt
    /// #    cGxlLm9yZz7CkAQTFggAOBYhBDnRAKtn1b2MBAECBfs3UfFYfa7xBQJaU28AAhsD
    /// #    BQsJCAcCBhUICQoLAgQWAgMBAh4BAheAAAoJEPs3UfFYfa7xJHQBAO4/GABMWUcJ
    /// #    5D/DZ9b+6YiFnysSjCT/gILJgxMgl7uoAPwJherI1pAAh49RnPHBR1IkWDtwzX65
    /// #    CJG8sDyO2FhzDs44BFpTbwASCisGAQQBl1UBBQEBB0B+A0GRHuBgdDX50T1nePjb
    /// #    mKQ5PeqXJbWEtVrUtVJaPwMBCAfCeAQYFggAIBYhBDnRAKtn1b2MBAECBfs3UfFY
    /// #    fa7xBQJaU28AAhsMAAoJEPs3UfFYfa7xzjIBANX2/FgDX3WkmvwpEHg/sn40zACM
    /// #    W2hrBY5x0sZ8H7JlAP47mCfCuRVBqyaePuzKbxLJeLe2BpDdc0n2izMVj8t9Cg==
    /// #    =QetZ
    /// #    -----END PGP PUBLIC KEY BLOCK-----"
    /// #    /*
    ///      ...
    ///      -----END PGP PUBLIC KEY BLOCK-----"
    /// #    */
    /// )?;
    ///
    /// let recipients =
    ///     cert.keys().with_policy(p, None).supported().alive().revoked(false)
    ///     // Or `for_storage_encryption()`, for data at rest.
    ///     .for_transport_encryption()
    ///     .map(Into::into)
    ///     .collect::<Vec<Recipient>>();
    ///
    /// assert_eq!(recipients[0].keyid(),
    ///            &"8BD8 8E94 C0D2 0333".parse()?);
    /// # Ok(()) }
    /// ```
    pub fn keyid(&self) -> &KeyID {
        &self.keyid
    }

    /// Sets the recipient keyid.
    ///
    /// # Examples
    ///
    /// ```
    /// # fn main() -> sequoia_openpgp::Result<()> {
    /// use std::io::Write;
    /// use sequoia_openpgp as openpgp;
    /// use openpgp::KeyID;
    /// use openpgp::cert::prelude::*;
    /// use openpgp::serialize::stream::{
    ///     Recipient, Message, Encryptor,
    /// };
    /// use openpgp::policy::StandardPolicy;
    /// # use openpgp::parse::Parse;
    ///
    /// let p = &StandardPolicy::new();
    ///
    /// let cert = Cert::from_bytes(
    /// #   // We do some acrobatics here to abbreviate the Cert.
    ///     "-----BEGIN PGP PUBLIC KEY BLOCK-----
    ///
    ///      xjMEWlNvABYJKwYBBAHaRw8BAQdA+EC2pvebpEbzPA9YplVgVXzkIG5eK+7wEAez
    /// #    lcBgLJrNMVRlc3R5IE1jVGVzdGZhY2UgKG15IG5ldyBrZXkpIDx0ZXN0eUBleGFt
    /// #    cGxlLm9yZz7CkAQTFggAOBYhBDnRAKtn1b2MBAECBfs3UfFYfa7xBQJaU28AAhsD
    /// #    BQsJCAcCBhUICQoLAgQWAgMBAh4BAheAAAoJEPs3UfFYfa7xJHQBAO4/GABMWUcJ
    /// #    5D/DZ9b+6YiFnysSjCT/gILJgxMgl7uoAPwJherI1pAAh49RnPHBR1IkWDtwzX65
    /// #    CJG8sDyO2FhzDs44BFpTbwASCisGAQQBl1UBBQEBB0B+A0GRHuBgdDX50T1nePjb
    /// #    mKQ5PeqXJbWEtVrUtVJaPwMBCAfCeAQYFggAIBYhBDnRAKtn1b2MBAECBfs3UfFY
    /// #    fa7xBQJaU28AAhsMAAoJEPs3UfFYfa7xzjIBANX2/FgDX3WkmvwpEHg/sn40zACM
    /// #    W2hrBY5x0sZ8H7JlAP47mCfCuRVBqyaePuzKbxLJeLe2BpDdc0n2izMVj8t9Cg==
    /// #    =QetZ
    /// #    -----END PGP PUBLIC KEY BLOCK-----"
    /// #    /*
    ///      ...
    ///      -----END PGP PUBLIC KEY BLOCK-----"
    /// #    */
    /// )?;
    ///
    /// let recipients =
    ///     cert.keys().with_policy(p, None).supported().alive().revoked(false)
    ///     // Or `for_storage_encryption()`, for data at rest.
    ///     .for_transport_encryption()
    ///     .map(|ka| Recipient::from(ka)
    ///         // Set the recipient keyid to the wildcard id.
    ///         .set_keyid(KeyID::wildcard())
    ///     );
    ///
    /// # let mut sink = vec![];
    /// let message = Message::new(&mut sink);
    /// let message = Encryptor::for_recipients(message, recipients).build()?;
    /// # let _ = message;
    /// # Ok(()) }
    /// ```
    pub fn set_keyid(mut self, keyid: KeyID) -> Self {
        self.keyid = keyid;
        self
    }
}

/// Encrypts a message.
///
/// The stream will be encrypted using a generated session key, which
/// will be encrypted using the given passwords, and for all given
/// recipients.
///
/// An [`Recipient`] is an encryption-capable (sub)key.  Note that a
/// certificate may have more than one encryption-capable subkey, and
/// even the primary key may be encryption-capable.
///
///   [`Recipient`]: struct.Recipient.html
///
/// To encrypt for more than one certificate, iterate over the
/// certificates and select encryption-capable keys, making sure that
/// at least one key is selected from each certificate.
///
/// # Examples
///
/// This demonstrates encrypting for multiple certificates.
///
/// ```
/// # fn main() -> sequoia_openpgp::Result<()> {
/// # use std::io::Write;
/// # use sequoia_openpgp as openpgp;
/// # use openpgp::cert::prelude::*;
/// # use openpgp::parse::Parse;
/// use openpgp::serialize::stream::{
///     Message, Encryptor, LiteralWriter,
/// };
/// use openpgp::policy::StandardPolicy;
/// let p = &StandardPolicy::new();
///
/// # let (cert_0, _) =
/// #     CertBuilder::general_purpose(None, Some("Mr. Pink ☮☮☮"))
/// #     .generate()?;
/// # let (cert_1, _) =
/// #     CertBuilder::general_purpose(None, Some("Mr. Pink ☮☮☮"))
/// #     .generate()?;
/// let recipient_certs = vec![cert_0, cert_1];
/// let mut recipients = Vec::new();
/// for cert in recipient_certs.iter() {
///     // Make sure we add at least one subkey from every
///     // certificate.
///     let mut found_one = false;
///     for key in cert.keys().with_policy(p, None)
///         .supported().alive().revoked(false).for_transport_encryption()
///     {
///         recipients.push(key);
///         found_one = true;
///     }
///
///     if ! found_one {
///         return Err(anyhow::anyhow!("No suitable encryption subkey for {}",
///                                    cert));
///     }
/// }
/// # assert_eq!(recipients.len(), 2);
///
/// # let mut sink = vec![];
/// let message = Message::new(&mut sink);
/// let message = Encryptor::for_recipients(message, recipients).build()?;
/// let mut w = LiteralWriter::new(message).build()?;
/// w.write_all(b"Hello world.")?;
/// w.finalize()?;
/// # Ok(()) }
/// ```
pub struct Encryptor<'a> {
    // XXX: Opportunity for optimization.  Previously, this writer
    // implemented `Drop`, so we could not move the inner writer out
    // of this writer.  We therefore wrapped it with `Option` so that
    // we can `take()` it.  This writer no longer implements Drop, so
    // we could avoid the Option here.
    inner: Option<writer::BoxStack<'a, Cookie>>,
    recipients: Vec<Recipient<'a>>,
    passwords: Vec<Password>,
    sym_algo: SymmetricAlgorithm,
    aead_algo: Option<AEADAlgorithm>,
    hash: Box<dyn crypto::hash::Digest>,
    cookie: Cookie,
}
assert_send_and_sync!(Encryptor<'_>);

impl<'a> Encryptor<'a> {
    /// Creates a new encryptor for the given recipients.
    ///
    /// To add more recipients, use [`Encryptor::add_recipients`].  To
    /// add a password, use [`Encryptor::add_password`].  To change
    /// the symmetric encryption algorithm, use
    /// [`Encryptor::symmetric_algo`].
    ///
    ///   [`Encryptor::add_recipients`]: #method.add_recipients
    ///   [`Encryptor::add_password`]: #method.add_password
    ///   [`Encryptor::symmetric_algo`]: #method.symmetric_algo
    ///
    /// # Examples
    ///
    /// ```
    /// # fn main() -> sequoia_openpgp::Result<()> {
    /// use std::io::Write;
    /// use sequoia_openpgp as openpgp;
    /// use openpgp::cert::prelude::*;
    /// use openpgp::serialize::stream::{
    ///     Message, Encryptor, LiteralWriter,
    /// };
    /// use openpgp::policy::StandardPolicy;
    /// # use openpgp::parse::Parse;
    /// let p = &StandardPolicy::new();
    ///
    /// let cert = Cert::from_bytes(
    /// #   // We do some acrobatics here to abbreviate the Cert.
    ///     "-----BEGIN PGP PUBLIC KEY BLOCK-----
    ///
    ///      xjMEWlNvABYJKwYBBAHaRw8BAQdA+EC2pvebpEbzPA9YplVgVXzkIG5eK+7wEAez
    /// #    lcBgLJrNMVRlc3R5IE1jVGVzdGZhY2UgKG15IG5ldyBrZXkpIDx0ZXN0eUBleGFt
    /// #    cGxlLm9yZz7CkAQTFggAOBYhBDnRAKtn1b2MBAECBfs3UfFYfa7xBQJaU28AAhsD
    /// #    BQsJCAcCBhUICQoLAgQWAgMBAh4BAheAAAoJEPs3UfFYfa7xJHQBAO4/GABMWUcJ
    /// #    5D/DZ9b+6YiFnysSjCT/gILJgxMgl7uoAPwJherI1pAAh49RnPHBR1IkWDtwzX65
    /// #    CJG8sDyO2FhzDs44BFpTbwASCisGAQQBl1UBBQEBB0B+A0GRHuBgdDX50T1nePjb
    /// #    mKQ5PeqXJbWEtVrUtVJaPwMBCAfCeAQYFggAIBYhBDnRAKtn1b2MBAECBfs3UfFY
    /// #    fa7xBQJaU28AAhsMAAoJEPs3UfFYfa7xzjIBANX2/FgDX3WkmvwpEHg/sn40zACM
    /// #    W2hrBY5x0sZ8H7JlAP47mCfCuRVBqyaePuzKbxLJeLe2BpDdc0n2izMVj8t9Cg==
    /// #    =QetZ
    /// #    -----END PGP PUBLIC KEY BLOCK-----"
    /// #    /*
    ///      ...
    ///      -----END PGP PUBLIC KEY BLOCK-----"
    /// #    */
    /// )?;
    ///
    /// let recipients =
    ///     cert.keys().with_policy(p, None).supported().alive().revoked(false)
    ///     // Or `for_storage_encryption()`, for data at rest.
    ///     .for_transport_encryption();
    ///
    /// # let mut sink = vec![];
    /// let message = Message::new(&mut sink);
    /// let message = Encryptor::for_recipients(message, recipients).build()?;
    /// let mut w = LiteralWriter::new(message).build()?;
    /// w.write_all(b"Hello world.")?;
    /// w.finalize()?;
    /// # Ok(()) }
    /// ```
    pub fn for_recipients<R>(inner: Message<'a>, recipients: R) -> Self
        where R: IntoIterator,
              R::Item: Into<Recipient<'a>>,
    {
            Self {
            inner: Some(inner.into()),
            recipients: recipients.into_iter().map(|r| r.into()).collect(),
            passwords: Vec::new(),
            sym_algo: Default::default(),
            aead_algo: Default::default(),
            hash: HashAlgorithm::SHA1.context().unwrap(),
            cookie: Default::default(), // Will be fixed in build.
        }
    }

    /// Creates a new encryptor for the given passwords.
    ///
    /// To add more passwords, use [`Encryptor::add_password`].  To
    /// add an recipient, use [`Encryptor::add_recipients`].  To change
    /// the symmetric encryption algorithm, use
    /// [`Encryptor::symmetric_algo`].
    ///
    ///   [`Encryptor::add_recipients`]: #method.add_recipients
    ///   [`Encryptor::add_password`]: #method.add_password
    ///   [`Encryptor::symmetric_algo`]: #method.symmetric_algo
    ///
    /// # Examples
    ///
    /// ```
    /// # fn main() -> sequoia_openpgp::Result<()> {
    /// use std::io::Write;
    /// use sequoia_openpgp as openpgp;
    /// use openpgp::serialize::stream::{
    ///     Message, Encryptor, LiteralWriter,
    /// };
    ///
    /// # let mut sink = vec![];
    /// let message = Message::new(&mut sink);
    /// let message = Encryptor::with_passwords(
    ///     message, Some("совершенно секретно")).build()?;
    /// let mut w = LiteralWriter::new(message).build()?;
    /// w.write_all(b"Hello world.")?;
    /// w.finalize()?;
    /// # Ok(()) }
    /// ```
    pub fn with_passwords<P>(inner: Message<'a>, passwords: P) -> Self
        where P: IntoIterator,
              P::Item: Into<Password>,
    {
        Self {
            inner: Some(inner.into()),
            recipients: Vec::new(),
            passwords: passwords.into_iter().map(|p| p.into()).collect(),
            sym_algo: Default::default(),
            aead_algo: Default::default(),
            hash: HashAlgorithm::SHA1.context().unwrap(),
            cookie: Default::default(), // Will be fixed in build.
        }
    }

    /// Adds recipients.
    ///
    /// The resulting message can be encrypted by any recipient and
    /// with any password.
    ///
    /// # Examples
    ///
    /// ```
    /// # fn main() -> sequoia_openpgp::Result<()> {
    /// use std::io::Write;
    /// use sequoia_openpgp as openpgp;
    /// use openpgp::cert::prelude::*;
    /// use openpgp::serialize::stream::{
    ///     Message, Encryptor, LiteralWriter,
    /// };
    /// use openpgp::policy::StandardPolicy;
    /// # use openpgp::parse::Parse;
    /// let p = &StandardPolicy::new();
    ///
    /// let cert = Cert::from_bytes(
    /// #   // We do some acrobatics here to abbreviate the Cert.
    ///     "-----BEGIN PGP PUBLIC KEY BLOCK-----
    ///
    ///      mQENBFpxtsABCADZcBa1Q3ZLZnju18o0+t8LoQuIIeyeUQ0H45y6xUqyrD5HSkVM
    /// #    VGQs6IHLq70mAizBJ4VznUVqVOh/NhOlapXi6/TKpjHvttdg45o6Pgqa0Kx64luT
    /// #    ZY+TEKyILcdBdhr3CzsEILnQst5jadgMvU9fnT/EkJIvxtWPlUzU5R7nnALO626x
    /// #    2M5Pj3k0h3ZNHMmYQQtReX/RP/xUh2SfOYG6i/MCclIlee8BXHB9k0bW2NAX2W7H
    /// #    rLDGPm1LzmyqxFGDvDvfPlYZ5nN2cbGsv3w75LDzv75kMhVnkZsrUjnHjVRzFq7q
    /// #    fSIpxlvJMEMKSIJ/TFztQoOBO5OlBb5qzYPpABEBAAG0F+G8iM+BzrnPg8+Ezr/P
    /// #    hM6tzrvOt8+CiQFUBBMBCAA+FiEEfcpYtU6xQxad3uFfJH9tq8hJFP4FAlpxtsAC
    /// #    GwMFCQPCZwAFCwkIBwIGFQgJCgsCBBYCAwECHgECF4AACgkQJH9tq8hJFP49hgf+
    /// #    IKvec0RkD9EHSLFc6AKDm/knaI4AIH0isZTz9jRCF8H/j3h8QVUE+/0jtCcyvR6F
    /// #    TGVSfO3pelDPYGIjDFI3aA6H/UlhZWzYRXZ+QQRrV0zwvLna3XjiW8ib3Ky+5bpQ
    /// #    0uVeee30u+U3SnaCL9QB4+UvwVvAxRuk49Z0Q8TsRrQyQNYpeZDN7uNrvA134cf6
    /// #    6pLUvzPG4lMLIvSXFuHou704EhT7NS3wAzFtjMrsLLieVqtbEi/kBaJTQSZQwjVB
    /// #    sE/Z8lp1heKw/33Br3cB63n4cTf0FdoFywDBhCAMU7fKboU5xBpm5bQJ4ck6j6w+
    /// #    BKG1FiQRR6PCUeb6GjxVOrkBDQRacbbAAQgAw538MMb/pRdpt7PTgBCedw+rU9fh
    /// #    onZYKwmCO7wz5VrVf8zIVvWKxhX6fBTSAy8mxaYbeL/3woQ9Leuo8f0PQNs9zw1N
    /// #    mdH+cnm2KQmL9l7/HQKMLgEAu/0C/q7ii/j8OMYitaMUyrwy+OzW3nCal/uJHIfj
    /// #    bdKx29MbKgF/zaBs8mhTvf/Tu0rIVNDPEicwijDEolGSGebZxdGdHJA31uayMHDK
    /// #    /mwySJViMZ8b+Lzc/dRgNbQoY6yjsjso7U9OZpQK1fooHOSQS6iLsSSsZLcGPD+7
    /// #    m7j3jwq68SIJPMsu0O8hdjFWL4Cfj815CwptAxRGkp00CIusAabO7m8DzwARAQAB
    /// #    iQE2BBgBCAAgFiEEfcpYtU6xQxad3uFfJH9tq8hJFP4FAlpxtsACGwwACgkQJH9t
    /// #    q8hJFP5rmQgAoYOUXolTiQmWipJTdMG/VZ5X7mL8JiBWAQ11K1o01cZCMlziyHnJ
    /// #    xJ6Mqjb6wAFpYBtqysJG/vfjc/XEoKgfFs7+zcuEnt41xJQ6tl/L0VTxs+tEwjZu
    /// #    Rp/owB9GCkqN9+xNEnlH77TLW1UisW+l0F8CJ2WFOj4lk9rcXcLlEdGmXfWIlVCb
    /// #    2/o0DD+HDNsF8nWHpDEy0mcajkgIUTvXQaDXKbccX6Wgep8dyBP7YucGmRPd9Z6H
    /// #    bGeT3KvlJlH5kthQ9shsmT14gYwGMR6rKpNUXmlpetkjqUK7pGVaHGgJWUZ9QPGU
    /// #    awwPdWWvZSyXJAPZ9lC5sTKwMJDwIxILug==
    /// #    =lAie
    /// #    -----END PGP PUBLIC KEY BLOCK-----"
    /// #    /*
    ///      ...
    ///      -----END PGP PUBLIC KEY BLOCK-----"
    /// #    */
    /// )?;
    ///
    /// let recipients =
    ///     cert.keys().with_policy(p, None).supported().alive().revoked(false)
    ///     // Or `for_storage_encryption()`, for data at rest.
    ///     .for_transport_encryption();
    ///
    /// # let mut sink = vec![];
    /// let message = Message::new(&mut sink);
    /// let message =
    ///     Encryptor::with_passwords(message, Some("совершенно секретно"))
    ///     .add_recipients(recipients)
    ///     .build()?;
    /// let mut message = LiteralWriter::new(message).build()?;
    /// message.write_all(b"Hello world.")?;
    /// message.finalize()?;
    /// # Ok(()) }
    /// ```
    pub fn add_recipients<R>(mut self, recipients: R) -> Self
        where R: IntoIterator,
              R::Item: Into<Recipient<'a>>,
    {
        for r in recipients {
            self.recipients.push(r.into());
        }
        self
    }

    /// Adds passwords to encrypt with.
    ///
    /// The resulting message can be encrypted with any password and
    /// by any recipient.
    ///
    /// # Examples
    ///
    /// ```
    /// # fn main() -> sequoia_openpgp::Result<()> {
    /// use std::io::Write;
    /// use sequoia_openpgp as openpgp;
    /// use openpgp::cert::prelude::*;
    /// use openpgp::serialize::stream::{
    ///     Message, Encryptor, LiteralWriter,
    /// };
    /// use openpgp::policy::StandardPolicy;
    /// # use openpgp::parse::Parse;
    /// let p = &StandardPolicy::new();
    ///
    /// let cert = Cert::from_bytes(
    /// #   // We do some acrobatics here to abbreviate the Cert.
    ///     "-----BEGIN PGP PUBLIC KEY BLOCK-----
    ///
    ///      mQENBFpxtsABCADZcBa1Q3ZLZnju18o0+t8LoQuIIeyeUQ0H45y6xUqyrD5HSkVM
    /// #    VGQs6IHLq70mAizBJ4VznUVqVOh/NhOlapXi6/TKpjHvttdg45o6Pgqa0Kx64luT
    /// #    ZY+TEKyILcdBdhr3CzsEILnQst5jadgMvU9fnT/EkJIvxtWPlUzU5R7nnALO626x
    /// #    2M5Pj3k0h3ZNHMmYQQtReX/RP/xUh2SfOYG6i/MCclIlee8BXHB9k0bW2NAX2W7H
    /// #    rLDGPm1LzmyqxFGDvDvfPlYZ5nN2cbGsv3w75LDzv75kMhVnkZsrUjnHjVRzFq7q
    /// #    fSIpxlvJMEMKSIJ/TFztQoOBO5OlBb5qzYPpABEBAAG0F+G8iM+BzrnPg8+Ezr/P
    /// #    hM6tzrvOt8+CiQFUBBMBCAA+FiEEfcpYtU6xQxad3uFfJH9tq8hJFP4FAlpxtsAC
    /// #    GwMFCQPCZwAFCwkIBwIGFQgJCgsCBBYCAwECHgECF4AACgkQJH9tq8hJFP49hgf+
    /// #    IKvec0RkD9EHSLFc6AKDm/knaI4AIH0isZTz9jRCF8H/j3h8QVUE+/0jtCcyvR6F
    /// #    TGVSfO3pelDPYGIjDFI3aA6H/UlhZWzYRXZ+QQRrV0zwvLna3XjiW8ib3Ky+5bpQ
    /// #    0uVeee30u+U3SnaCL9QB4+UvwVvAxRuk49Z0Q8TsRrQyQNYpeZDN7uNrvA134cf6
    /// #    6pLUvzPG4lMLIvSXFuHou704EhT7NS3wAzFtjMrsLLieVqtbEi/kBaJTQSZQwjVB
    /// #    sE/Z8lp1heKw/33Br3cB63n4cTf0FdoFywDBhCAMU7fKboU5xBpm5bQJ4ck6j6w+
    /// #    BKG1FiQRR6PCUeb6GjxVOrkBDQRacbbAAQgAw538MMb/pRdpt7PTgBCedw+rU9fh
    /// #    onZYKwmCO7wz5VrVf8zIVvWKxhX6fBTSAy8mxaYbeL/3woQ9Leuo8f0PQNs9zw1N
    /// #    mdH+cnm2KQmL9l7/HQKMLgEAu/0C/q7ii/j8OMYitaMUyrwy+OzW3nCal/uJHIfj
    /// #    bdKx29MbKgF/zaBs8mhTvf/Tu0rIVNDPEicwijDEolGSGebZxdGdHJA31uayMHDK
    /// #    /mwySJViMZ8b+Lzc/dRgNbQoY6yjsjso7U9OZpQK1fooHOSQS6iLsSSsZLcGPD+7
    /// #    m7j3jwq68SIJPMsu0O8hdjFWL4Cfj815CwptAxRGkp00CIusAabO7m8DzwARAQAB
    /// #    iQE2BBgBCAAgFiEEfcpYtU6xQxad3uFfJH9tq8hJFP4FAlpxtsACGwwACgkQJH9t
    /// #    q8hJFP5rmQgAoYOUXolTiQmWipJTdMG/VZ5X7mL8JiBWAQ11K1o01cZCMlziyHnJ
    /// #    xJ6Mqjb6wAFpYBtqysJG/vfjc/XEoKgfFs7+zcuEnt41xJQ6tl/L0VTxs+tEwjZu
    /// #    Rp/owB9GCkqN9+xNEnlH77TLW1UisW+l0F8CJ2WFOj4lk9rcXcLlEdGmXfWIlVCb
    /// #    2/o0DD+HDNsF8nWHpDEy0mcajkgIUTvXQaDXKbccX6Wgep8dyBP7YucGmRPd9Z6H
    /// #    bGeT3KvlJlH5kthQ9shsmT14gYwGMR6rKpNUXmlpetkjqUK7pGVaHGgJWUZ9QPGU
    /// #    awwPdWWvZSyXJAPZ9lC5sTKwMJDwIxILug==
    /// #    =lAie
    /// #    -----END PGP PUBLIC KEY BLOCK-----"
    /// #    /*
    ///      ...
    ///      -----END PGP PUBLIC KEY BLOCK-----"
    /// #    */
    /// )?;
    ///
    /// let recipients =
    ///     cert.keys().with_policy(p, None).supported().alive().revoked(false)
    ///     // Or `for_storage_encryption()`, for data at rest.
    ///     .for_transport_encryption();
    ///
    /// # let mut sink = vec![];
    /// let message = Message::new(&mut sink);
    /// let message =
    ///     Encryptor::for_recipients(message, recipients)
    ///         .add_passwords(Some("совершенно секретно"))
    ///         .build()?;
    /// let mut message = LiteralWriter::new(message).build()?;
    /// message.write_all(b"Hello world.")?;
    /// message.finalize()?;
    /// # Ok(()) }
    /// ```
    pub fn add_passwords<P>(mut self, passwords: P) -> Self
        where P: IntoIterator,
              P::Item: Into<Password>,
    {
        for p in passwords {
            self.passwords.push(p.into());
        }
        self
    }

    /// Sets the symmetric algorithm to use.
    ///
    /// # Examples
    ///
    /// ```
    /// # fn main() -> sequoia_openpgp::Result<()> {
    /// use std::io::Write;
    /// use sequoia_openpgp as openpgp;
    /// use openpgp::types::SymmetricAlgorithm;
    /// use openpgp::serialize::stream::{
    ///     Message, Encryptor, LiteralWriter,
    /// };
    ///
    /// # let mut sink = vec![];
    /// let message = Message::new(&mut sink);
    /// let message =
    ///     Encryptor::with_passwords(message, Some("совершенно секретно"))
    ///         .symmetric_algo(SymmetricAlgorithm::AES128)
    ///         .build()?;
    /// let mut message = LiteralWriter::new(message).build()?;
    /// message.write_all(b"Hello world.")?;
    /// message.finalize()?;
    /// # Ok(()) }
    /// ```
    pub fn symmetric_algo(mut self, algo: SymmetricAlgorithm) -> Self {
        self.sym_algo = algo;
        self
    }

    /// Enables AEAD and sets the AEAD algorithm to use.
    ///
    /// This feature is [experimental](../../index.html#experimental-features).
    ///
    /// # Examples
    ///
    /// ```
    /// # fn main() -> sequoia_openpgp::Result<()> {
    /// use std::io::Write;
    /// use sequoia_openpgp as openpgp;
    /// use openpgp::types::AEADAlgorithm;
    /// use openpgp::serialize::stream::{
    ///     Message, Encryptor, LiteralWriter,
    /// };
    ///
    /// # let mut sink = vec![];
    /// let message = Message::new(&mut sink);
    /// let message =
    ///     Encryptor::with_passwords(message, Some("совершенно секретно"))
    ///         .aead_algo(AEADAlgorithm::EAX)
    ///         .build()?;
    /// let mut message = LiteralWriter::new(message).build()?;
    /// message.write_all(b"Hello world.")?;
    /// message.finalize()?;
    /// # Ok(()) }
    /// ```
    // Function hidden from the public API due to
    // https://gitlab.com/sequoia-pgp/sequoia/-/issues/550
    // It is used only for tests so that it does not bit-rot.
    #[cfg(test)]
    pub fn aead_algo(mut self, algo: AEADAlgorithm) -> Self {
        self.aead_algo = Some(algo);
        self
    }

    // The default chunk size.
    //
    // A page, 3 per mille overhead.
    const AEAD_CHUNK_SIZE : usize = 4096;

    /// Builds the encryptor, returning the writer stack.
    ///
    /// The most useful filters to push to the writer stack next are
    /// the [`Padder`] or [`Compressor`], and after that the
    /// [`Signer`].  Finally, literal data *must* be wrapped using the
    /// [`LiteralWriter`].
    ///
    ///   [`Compressor`]: struct.Compressor.html
    ///   [`Padder`]: padding/struct.Padder.html
    ///   [`Signer`]: struct.Signer.html
    ///   [`LiteralWriter`]: struct.LiteralWriter.html
    ///
    /// # Examples
    ///
    /// ```
    /// # fn main() -> sequoia_openpgp::Result<()> {
    /// use std::io::Write;
    /// use sequoia_openpgp as openpgp;
    /// use openpgp::serialize::stream::{
    ///     Message, Encryptor, LiteralWriter,
    /// };
    ///
    /// # let mut sink = vec![];
    /// let message = Message::new(&mut sink);
    /// let message =
    ///     Encryptor::with_passwords(message, Some("совершенно секретно"))
    ///         // Customize the `Encryptor` here.
    ///         .build()?;
    ///
    /// // Optionally add a `Padder` or `Compressor` here.
    /// // Optionally add a `Signer` here.
    ///
    /// let mut message = LiteralWriter::new(message).build()?;
    /// message.write_all(b"Hello world.")?;
    /// message.finalize()?;
    /// # Ok(()) }
    /// ```
    pub fn build(mut self) -> Result<Message<'a>> {
        if self.recipients.len() + self.passwords.len() == 0 {
            return Err(Error::InvalidOperation(
                "Neither recipients nor passwords given".into()).into());
        }

        struct AEADParameters {
            algo: AEADAlgorithm,
            chunk_size: usize,
            nonce: Box<[u8]>,
        }

        let aead = if let Some(algo) = self.aead_algo {
            let mut nonce = vec![0; algo.iv_size()?];
            crypto::random(&mut nonce);
            Some(AEADParameters {
                algo,
                chunk_size: Self::AEAD_CHUNK_SIZE,
                nonce: nonce.into_boxed_slice(),
            })
        } else {
            None
        };

        let mut inner = self.inner.take().expect("Added in constructors");
        let level = inner.as_ref().cookie_ref().level + 1;

        // Generate a session key.
        let sk = SessionKey::new(self.sym_algo.key_size()?);

        // Write the PKESK packet(s).
        for recipient in self.recipients.iter() {
            let mut pkesk =
                PKESK3::for_recipient(self.sym_algo, &sk, recipient.key)?;
            pkesk.set_recipient(recipient.keyid.clone());
            Packet::PKESK(pkesk.into()).serialize(&mut inner)?;
        }

        // Write the SKESK packet(s).
        for password in self.passwords.iter() {
            if let Some(aead) = aead.as_ref() {
                let skesk = SKESK5::with_password(self.sym_algo,
                                                  self.sym_algo,
                                                  aead.algo,
                                                  Default::default(),
                                                  &sk, password).unwrap();
                Packet::SKESK(skesk.into()).serialize(&mut inner)?;
            } else {
                let skesk = SKESK4::with_password(self.sym_algo,
                                                  self.sym_algo,
                                                  Default::default(),
                                                  &sk, password).unwrap();
                Packet::SKESK(skesk.into()).serialize(&mut inner)?;
            }
        }

        if let Some(aead) = aead {
            // Write the AED packet.
            CTB::new(Tag::AED).serialize(&mut inner)?;
            let mut inner = PartialBodyFilter::new(Message::from(inner),
                                                   Cookie::new(level));
            let aed = AED1::new(self.sym_algo, aead.algo,
                                aead.chunk_size as u64, aead.nonce)?;
            aed.serialize_headers(&mut inner)?;

            writer::AEADEncryptor::new(
                inner.into(),
                Cookie::new(level),
                aed.symmetric_algo(),
                aed.aead(),
                aead.chunk_size,
                aed.iv(),
                &sk,
            )
        } else {
            // Write the SEIP packet.
            CTB::new(Tag::SEIP).serialize(&mut inner)?;
            let mut inner = PartialBodyFilter::new(Message::from(inner),
                                                   Cookie::new(level));
            inner.write_all(&[1])?; // Version.

            // Install encryptor.
            self.inner = Some(writer::Encryptor::new(
                inner.into(),
                Cookie::new(level),
                self.sym_algo,
                &sk,
            )?.into());
            self.cookie = Cookie::new(level);

            // Write the initialization vector, and the quick-check
            // bytes.  The hash for the MDC must include the
            // initialization vector, hence we must write this to
            // self after installing the encryptor at self.inner.
            let mut iv = vec![0; self.sym_algo.block_size()?];
            crypto::random(&mut iv);
            self.write_all(&iv)?;
            self.write_all(&iv[iv.len() - 2..])?;

            Ok(Message::from(Box::new(self)))
        }
    }

    /// Emits the MDC packet and recovers the original writer.
    fn emit_mdc(&mut self) -> Result<writer::BoxStack<'a, Cookie>> {
        if let Some(mut w) = self.inner.take() {
            // Write the MDC, which must be the last packet inside the
            // encrypted packet stream.  The hash includes the MDC's
            // CTB and length octet.
            let mut header = Vec::new();
            CTB::new(Tag::MDC).serialize(&mut header)?;
            BodyLength::Full(20).serialize(&mut header)?;

            self.hash.update(&header);
            Packet::MDC(MDC::from(self.hash.clone())).serialize(&mut w)?;

            // Now recover the original writer.  First, strip the
            // Encryptor.
            let w = w.into_inner()?.unwrap();
            // And the partial body filter.
            let w = w.into_inner()?.unwrap();

            Ok(w)
        } else {
            Err(Error::InvalidOperation(
                "Inner writer already taken".into()).into())
        }
    }
}

impl<'a> fmt::Debug for Encryptor<'a> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("Encryptor")
            .field("inner", &self.inner)
            .finish()
    }
}

impl<'a> Write for Encryptor<'a> {
    fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
        let written = match self.inner.as_mut() {
            Some(ref mut w) => w.write(buf),
            None => Ok(buf.len()),
        };
        if let Ok(amount) = written {
            self.hash.update(&buf[..amount]);
        }
        written
    }

    fn flush(&mut self) -> io::Result<()> {
        match self.inner.as_mut() {
            Some(ref mut w) => w.flush(),
            None => Ok(()),
        }
    }
}

impl<'a> writer::Stackable<'a, Cookie> for Encryptor<'a> {
    fn pop(&mut self) -> Result<Option<writer::BoxStack<'a, Cookie>>> {
        unreachable!("Only implemented by Signer")
    }
    /// Sets the inner stackable.
    fn mount(&mut self, _new: writer::BoxStack<'a, Cookie>) {
        unreachable!("Only implemented by Signer")
    }
    fn inner_ref(&self) -> Option<&(dyn writer::Stackable<'a, Cookie> + Send + Sync)> {
        self.inner.as_ref().map(|r| r.as_ref())
    }
    fn inner_mut(&mut self) -> Option<&mut (dyn writer::Stackable<'a, Cookie> + Send + Sync)> {
        if let Some(ref mut i) = self.inner {
            Some(i)
        } else {
            None
        }
    }
    fn into_inner(mut self: Box<Self>) -> Result<Option<writer::BoxStack<'a, Cookie>>> {
        Ok(Some(self.emit_mdc()?))
    }
    fn cookie_set(&mut self, cookie: Cookie) -> Cookie {
        ::std::mem::replace(&mut self.cookie, cookie)
    }
    fn cookie_ref(&self) -> &Cookie {
        &self.cookie
    }
    fn cookie_mut(&mut self) -> &mut Cookie {
        &mut self.cookie
    }
    fn position(&self) -> u64 {
        self.inner.as_ref().map(|i| i.position()).unwrap_or(0)
    }
}

#[cfg(test)]
mod test {
    use std::io::Read;
    use crate::{Packet, PacketPile, packet::CompressedData};
    use crate::parse::{Parse, PacketParserResult, PacketParser};
    use super::*;
    use crate::types::DataFormat::Text as T;
    use crate::policy::Policy;
    use crate::policy::StandardPolicy as P;

    #[test]
    fn arbitrary() {
        let mut o = vec![];
        {
            let m = Message::new(&mut o);
            let mut ustr = ArbitraryWriter::new(m, Tag::Literal).unwrap();
            ustr.write_all(b"t").unwrap(); // type
            ustr.write_all(b"\x00").unwrap(); // fn length
            ustr.write_all(b"\x00\x00\x00\x00").unwrap(); // date
            ustr.write_all(b"Hello world.").unwrap(); // body
            ustr.finalize().unwrap();
        }

        let mut pp = PacketParser::from_bytes(&o).unwrap().unwrap();
        if let Packet::Literal(ref l) = pp.packet {
                assert_eq!(l.format(), DataFormat::Text);
                assert_eq!(l.filename(), None);
                assert_eq!(l.date(), None);
        } else {
            panic!("Unexpected packet type.");
        }

        let mut body = vec![];
        pp.read_to_end(&mut body).unwrap();
        assert_eq!(&body, b"Hello world.");

        // Make sure it is the only packet.
        let (_, ppr) = pp.recurse().unwrap();
        assert!(ppr.is_eof());
    }

    // Create some crazy nesting structures, serialize the messages,
    // reparse them, and make sure we get the same result.
    #[test]
    fn stream_0() {
        // 1: CompressedData(CompressedData { algo: 0 })
        //  1: Literal(Literal { body: "one (3 bytes)" })
        //  2: Literal(Literal { body: "two (3 bytes)" })
        // 2: Literal(Literal { body: "three (5 bytes)" })
        let mut one = Literal::new(T);
        one.set_body(b"one".to_vec());
        let mut two = Literal::new(T);
        two.set_body(b"two".to_vec());
        let mut three = Literal::new(T);
        three.set_body(b"three".to_vec());
        let mut reference = Vec::new();
        reference.push(
            CompressedData::new(CompressionAlgorithm::Uncompressed)
                .push(one.into())
                .push(two.into())
                .into());
        reference.push(three.into());

        let mut o = vec![];
        {
            let m = Message::new(&mut o);
            let c = Compressor::new(m)
                .algo(CompressionAlgorithm::Uncompressed).build().unwrap();
            let mut ls = LiteralWriter::new(c).format(T).build().unwrap();
            write!(ls, "one").unwrap();
            let c = ls.finalize_one().unwrap().unwrap(); // Pop the LiteralWriter.
            let mut ls = LiteralWriter::new(c).format(T).build().unwrap();
            write!(ls, "two").unwrap();
            let c = ls.finalize_one().unwrap().unwrap(); // Pop the LiteralWriter.
            let c = c.finalize_one().unwrap().unwrap(); // Pop the Compressor.
            let mut ls = LiteralWriter::new(c).format(T).build().unwrap();
            write!(ls, "three").unwrap();
            ls.finalize().unwrap();
        }

        let pile = PacketPile::from(reference);
        let pile2 = PacketPile::from_bytes(&o).unwrap();
        if pile != pile2 {
            eprintln!("REFERENCE...");
            pile.pretty_print();
            eprintln!("REPARSED...");
            pile2.pretty_print();
            panic!("Reparsed packet does not match reference packet!");
        }
    }

    // Create some crazy nesting structures, serialize the messages,
    // reparse them, and make sure we get the same result.
    #[test]
    fn stream_1() {
        // 1: CompressedData(CompressedData { algo: 0 })
        //  1: CompressedData(CompressedData { algo: 0 })
        //   1: Literal(Literal { body: "one (3 bytes)" })
        //   2: Literal(Literal { body: "two (3 bytes)" })
        //  2: CompressedData(CompressedData { algo: 0 })
        //   1: Literal(Literal { body: "three (5 bytes)" })
        //   2: Literal(Literal { body: "four (4 bytes)" })
        let mut one = Literal::new(T);
        one.set_body(b"one".to_vec());
        let mut two = Literal::new(T);
        two.set_body(b"two".to_vec());
        let mut three = Literal::new(T);
        three.set_body(b"three".to_vec());
        let mut four = Literal::new(T);
        four.set_body(b"four".to_vec());
        let mut reference = Vec::new();
        reference.push(
            CompressedData::new(CompressionAlgorithm::Uncompressed)
                .push(CompressedData::new(CompressionAlgorithm::Uncompressed)
                      .push(one.into())
                      .push(two.into())
                      .into())
                .push(CompressedData::new(CompressionAlgorithm::Uncompressed)
                      .push(three.into())
                      .push(four.into())
                      .into())
                .into());

        let mut o = vec![];
        {
            let m = Message::new(&mut o);
            let c0 = Compressor::new(m)
                .algo(CompressionAlgorithm::Uncompressed).build().unwrap();
            let c = Compressor::new(c0)
                .algo(CompressionAlgorithm::Uncompressed).build().unwrap();
            let mut ls = LiteralWriter::new(c).format(T).build().unwrap();
            write!(ls, "one").unwrap();
            let c = ls.finalize_one().unwrap().unwrap();
            let mut ls = LiteralWriter::new(c).format(T).build().unwrap();
            write!(ls, "two").unwrap();
            let c = ls.finalize_one().unwrap().unwrap();
            let c0 = c.finalize_one().unwrap().unwrap();
            let c = Compressor::new(c0)
                .algo(CompressionAlgorithm::Uncompressed).build().unwrap();
            let mut ls = LiteralWriter::new(c).format(T).build().unwrap();
            write!(ls, "three").unwrap();
            let c = ls.finalize_one().unwrap().unwrap();
            let mut ls = LiteralWriter::new(c).format(T).build().unwrap();
            write!(ls, "four").unwrap();
            ls.finalize().unwrap();
        }

        let pile = PacketPile::from(reference);
        let pile2 = PacketPile::from_bytes(&o).unwrap();
        if pile != pile2 {
            eprintln!("REFERENCE...");
            pile.pretty_print();
            eprintln!("REPARSED...");
            pile2.pretty_print();
            panic!("Reparsed packet does not match reference packet!");
        }
    }

    #[cfg(feature = "compression-bzip2")]
    #[test]
    fn stream_big() {
        let zeros = vec![0; 1024 * 1024 * 4];
        let mut o = vec![];
        {
            let m = Message::new(&mut o);
            let c = Compressor::new(m)
                .algo(CompressionAlgorithm::BZip2).build().unwrap();
            let mut ls = LiteralWriter::new(c).build().unwrap();
            // Write 64 megabytes of zeroes.
            for _ in 0 .. 16 {
                ls.write_all(&zeros).unwrap();
            }
        }
        assert!(o.len() < 1024);
    }

    #[test]
    fn signature() {
        let p = &P::new();
        use crate::crypto::KeyPair;
        use std::collections::HashMap;
        use crate::Fingerprint;

        let mut keys: HashMap<Fingerprint, key::UnspecifiedPublic> = HashMap::new();
        for tsk in &[
            Cert::from_bytes(crate::tests::key("testy-private.pgp")).unwrap(),
            Cert::from_bytes(crate::tests::key("testy-new-private.pgp")).unwrap(),
        ] {
            for key in tsk.keys().with_policy(p, crate::frozen_time())
                .for_signing().map(|ka| ka.key())
            {
                keys.insert(key.fingerprint(), key.clone());
            }
        }

        let mut o = vec![];
        {
            let mut signers = keys.iter().map(|(_, key)| {
                key.clone().parts_into_secret().unwrap().into_keypair()
                    .expect("expected unencrypted secret key")
            }).collect::<Vec<KeyPair>>();

            let m = Message::new(&mut o);
            let mut signer = Signer::new(m, signers.pop().unwrap());
            for s in signers.into_iter() {
                signer = signer.add_signer(s);
            }
            let signer = signer.build().unwrap();
            let mut ls = LiteralWriter::new(signer).build().unwrap();
            ls.write_all(b"Tis, tis, tis.  Tis is important.").unwrap();
            let _ = ls.finalize().unwrap();
        }

        let mut ppr = PacketParser::from_bytes(&o).unwrap();
        let mut good = 0;
        while let PacketParserResult::Some(mut pp) = ppr {
            if let Packet::Signature(sig) = &mut pp.packet {
                let key = keys.get(&sig.issuer_fingerprints().nth(0).unwrap())
                    .unwrap();
                sig.verify(key).unwrap();
                good += 1;
            }

            // Get the next packet.
            ppr = pp.recurse().unwrap().1;
        }
        assert_eq!(good, 2);
    }

    #[test]
    fn encryptor() {
        let passwords = vec!["streng geheim".into(),
                             "top secret".into()];
        let message = b"Hello world.";

        // Write a simple encrypted message...
        let mut o = vec![];
        {
            let m = Message::new(&mut o);
            let encryptor = Encryptor::with_passwords(m, passwords.clone())
                .build().unwrap();
            let mut literal = LiteralWriter::new(encryptor).build()
                .unwrap();
            literal.write_all(message).unwrap();
            literal.finalize().unwrap();
        }

        // ... and recover it...
        #[derive(Debug, PartialEq)]
        enum State {
            Start,
            Decrypted(Vec<(SymmetricAlgorithm, SessionKey)>),
            Deciphered,
            MDC,
            Done,
        }

        // ... with every password.
        for password in &passwords {
            let mut state = State::Start;
            let mut ppr = PacketParser::from_bytes(&o).unwrap();
            while let PacketParserResult::Some(mut pp) = ppr {
                state = match state {
                    // Look for the SKESK packet.
                    State::Start =>
                        if let Packet::SKESK(ref skesk) = pp.packet {
                            match skesk.decrypt(password) {
                                Ok((algo, key))
                                    => State::Decrypted(
                                        vec![(algo, key)]),
                                Err(e) =>
                                    panic!("Decryption failed: {}", e),
                            }
                        } else {
                            panic!("Unexpected packet: {:?}", pp.packet)
                        },

                    // Look for the SEIP packet.
                    State::Decrypted(mut keys) =>
                        match pp.packet {
                            Packet::SEIP(_) =>
                                loop {
                                    if let Some((algo, key)) = keys.pop() {
                                        let r = pp.decrypt(algo, &key);
                                        if r.is_ok() {
                                            break State::Deciphered;
                                        }
                                    } else {
                                        panic!("seip decryption failed");
                                    }
                                },
                            Packet::SKESK(ref skesk) =>
                                match skesk.decrypt(password) {
                                    Ok((algo, key)) => {
                                        keys.push((algo, key));
                                        State::Decrypted(keys)
                                    },
                                    Err(e) =>
                                        panic!("Decryption failed: {}", e),
                                },
                            _ =>
                                panic!("Unexpected packet: {:?}", pp.packet),
                        },

                    // Look for the literal data packet.
                    State::Deciphered =>
                        if let Packet::Literal(_) = pp.packet {
                            let mut body = Vec::new();
                            pp.read_to_end(&mut body).unwrap();
                            assert_eq!(&body, message);
                            State::MDC
                        } else {
                            panic!("Unexpected packet: {:?}", pp.packet)
                        },

                    // Look for the MDC packet.
                    State::MDC =>
                        if let Packet::MDC(ref mdc) = pp.packet {
                            assert_eq!(mdc.digest(), mdc.computed_digest());
                            State::Done
                        } else {
                            panic!("Unexpected packet: {:?}", pp.packet)
                        },

                    State::Done =>
                        panic!("Unexpected packet: {:?}", pp.packet),
                };

                // Next?
                ppr = pp.recurse().unwrap().1;
            }
            assert_eq!(state, State::Done);
        }
    }

    #[test]
    fn aead_messages() -> Result<()> {
        // AEAD data is of the form:
        //
        //   [ chunk1 ][ tag1 ] ... [ chunkN ][ tagN ][ tag ]
        //
        // All chunks are the same size except for the last chunk, which may
        // be shorter.
        //
        // In `Decryptor::read_helper`, we read a chunk and a tag worth of
        // data at a time.  Because only the last chunk can be shorter, if
        // the amount read is less than `chunk_size + tag_size`, then we know
        // that we've read the last chunk.
        //
        // Unfortunately, this is not sufficient: if the last chunk is
        // `chunk_size - tag size` bytes large, then when we read it, we'll
        // read `chunk_size + tag_size` bytes, because we'll have also read
        // the final tag!
        //
        // Make sure we handle this situation correctly.

        use std::cmp;

        use crate::parse::{
            stream::{
                DecryptorBuilder,
                DecryptionHelper,
                VerificationHelper,
                MessageStructure,
            },
        };
        use crate::cert::prelude::*;
        use crate::serialize::stream::{LiteralWriter, Message};

        let (tsk, _) = CertBuilder::new()
            .set_cipher_suite(CipherSuite::Cv25519)
            .add_transport_encryption_subkey()
            .generate().unwrap();

        struct Helper<'a> {
            policy: &'a dyn Policy,
            tsk: &'a Cert,
        };
        impl<'a> VerificationHelper for Helper<'a> {
            fn get_certs(&mut self, _ids: &[crate::KeyHandle])
                               -> Result<Vec<Cert>> {
                Ok(Vec::new())
            }
            fn check(&mut self, _structure: MessageStructure) -> Result<()> {
                Ok(())
            }
        }
        impl<'a> DecryptionHelper for Helper<'a> {
            fn decrypt<D>(&mut self, pkesks: &[PKESK], _skesks: &[SKESK],
                          sym_algo: Option<SymmetricAlgorithm>,
                          mut decrypt: D) -> Result<Option<crate::Fingerprint>>
                where D: FnMut(SymmetricAlgorithm, &SessionKey) -> bool
            {
                let mut keypair = self.tsk.keys().with_policy(self.policy, None)
                    .for_transport_encryption()
                    .map(|ka| ka.key()).next().unwrap()
                    .clone().parts_into_secret().unwrap()
                    .into_keypair().unwrap();
                pkesks[0].decrypt(&mut keypair, sym_algo)
                    .map(|(algo, session_key)| decrypt(algo, &session_key));
                Ok(None)
            }
        }

        let p = &P::new();

        for chunks in 0..3 {
            for msg_len in
                      cmp::max(24, chunks * Encryptor::AEAD_CHUNK_SIZE) - 24
                          ..chunks * Encryptor::AEAD_CHUNK_SIZE + 24
            {
                eprintln!("Encrypting message of size: {}", msg_len);

                let mut content : Vec<u8> = Vec::new();
                for i in 0..msg_len {
                    content.push(b'0' + ((i % 10) as u8));
                }

                let mut msg = vec![];
                {
                    let m = Message::new(&mut msg);
                    let recipients = tsk
                        .keys().with_policy(p, None)
                        .for_storage_encryption().for_transport_encryption();
                    let encryptor = Encryptor::for_recipients(m, recipients)
                        .aead_algo(AEADAlgorithm::EAX)
                        .build().unwrap();
                    let mut literal = LiteralWriter::new(encryptor).build()
                        .unwrap();
                    literal.write_all(&content).unwrap();
                    literal.finalize().unwrap();
                }

                for &read_len in &[
                    37,
                    Encryptor::AEAD_CHUNK_SIZE - 1,
                    Encryptor::AEAD_CHUNK_SIZE,
                    100 * Encryptor::AEAD_CHUNK_SIZE
                ] {
                    for &do_err in &[ false, true ] {
                        let mut msg = msg.clone();
                        if do_err {
                            let l = msg.len() - 1;
                            if msg[l] == 0 {
                                msg[l] = 1;
                            } else {
                                msg[l] = 0;
                            }
                        }

                        let h = Helper { policy: p, tsk: &tsk };
                        // Note: a corrupted message is only guaranteed
                        // to error out before it returns EOF.
                        let mut v = match DecryptorBuilder::from_bytes(&msg)?
                            .with_policy(p, None, h)
                        {
                            Ok(v) => v,
                            Err(_) if do_err => continue,
                            Err(err) => panic!("Decrypting message: {}", err),
                        };

                        let mut buffer = Vec::new();
                        buffer.resize(read_len, 0);

                        let mut decrypted_content = Vec::new();
                        loop {
                            match v.read(&mut buffer[..read_len]) {
                                Ok(0) if do_err =>
                                    panic!("Expected an error, got EOF"),
                                Ok(0) => break,
                                Ok(len) =>
                                    decrypted_content.extend_from_slice(
                                        &buffer[..len]),
                                Err(_) if do_err => break,
                                Err(err) =>
                                    panic!("Decrypting data: {:?}", err),
                            }
                        }

                        if do_err {
                            // If we get an error once, we should get
                            // one again.
                            for _ in 0..3 {
                                assert!(v.read(&mut buffer[..read_len]).is_err());
                            }
                        }

                        // We only corrupted the final tag, so we
                        // should get all of the content.
                        assert_eq!(msg_len, decrypted_content.len());
                        assert_eq!(content, decrypted_content);
                    }
                }
            }
        }
        Ok(())
    }

    #[test]
    fn signature_at_time() {
        // Generates a signature with a specific Signature Creation
        // Time.
        use crate::cert::prelude::*;
        use crate::serialize::stream::{LiteralWriter, Message};
        use crate::crypto::KeyPair;

        let p = &P::new();

        let (cert, _) = CertBuilder::new()
            .add_signing_subkey()
            .set_cipher_suite(CipherSuite::Cv25519)
            .generate().unwrap();

        // What we're going to sign with.
        let ka = cert.keys().with_policy(p, None).for_signing().nth(0).unwrap();

        // A timestamp later than the key's creation.
        let timestamp = ka.key().creation_time()
            + std::time::Duration::from_secs(14 * 24 * 60 * 60);
        assert!(ka.key().creation_time() < timestamp);

        let mut o = vec![];
        {
            let signer_keypair : KeyPair =
                ka.key().clone().parts_into_secret().unwrap().into_keypair()
                    .expect("expected unencrypted secret key");

            let m = Message::new(&mut o);
            let signer = Signer::new(m, signer_keypair);
            let signer = signer.creation_time(timestamp);
            let signer = signer.build().unwrap();

            let mut ls = LiteralWriter::new(signer).build().unwrap();
            ls.write_all(b"Tis, tis, tis.  Tis is important.").unwrap();
            let signer = ls.finalize_one().unwrap().unwrap();
            let _ = signer.finalize_one().unwrap().unwrap();
        }

        let mut ppr = PacketParser::from_bytes(&o).unwrap();
        let mut good = 0;
        while let PacketParserResult::Some(mut pp) = ppr {
            if let Packet::Signature(sig) = &mut pp.packet {
                assert_eq!(sig.signature_creation_time(), Some(timestamp));
                sig.verify(ka.key()).unwrap();
                good += 1;
            }

            // Get the next packet.
            ppr = pp.recurse().unwrap().1;
        }
        assert_eq!(good, 1);
    }

    /// Checks that newlines are properly normalized when verifying
    /// text signatures.
    #[test]
    fn issue_530_signing() -> Result<()> {
        use std::io::Write;
        use crate::*;
        use crate::packet::signature;
        use crate::serialize::stream::{Message, Signer};

        use crate::policy::StandardPolicy;
        use crate::{Result, Cert};
        use crate::parse::Parse;
        use crate::parse::stream::*;

        let normalized_data = b"one\r\ntwo\r\nthree";

        let p = &StandardPolicy::new();
        let cert: Cert =
            Cert::from_bytes(crate::tests::key("testy-new-private.pgp"))?;

        for data in &[
            &b"one\r\ntwo\r\nthree"[..], // dos
            b"one\ntwo\nthree",          // unix
            b"one\ntwo\r\nthree",        // mixed
            b"one\r\ntwo\nthree",
            b"one\rtwo\rthree",          // classic mac
        ] {
            eprintln!("{:?}", String::from_utf8(data.to_vec())?);
            let signing_keypair = cert.keys().secret()
                .with_policy(p, None).supported()
                .alive().revoked(false).for_signing()
                .nth(0).unwrap()
                .key().clone().into_keypair()?;
            let mut signature = vec![];
            {
                let message = Message::new(&mut signature);
                let mut message = Signer::with_template(
                    message, signing_keypair,
                    signature::SignatureBuilder::new(SignatureType::Text)
                ).detached().build()?;
                message.write_all(data)?;
                message.finalize()?;
            }

            struct Helper {};
            impl VerificationHelper for Helper {
                fn get_certs(&mut self, _ids: &[KeyHandle]) -> Result<Vec<Cert>>
                {
                    Ok(vec![
                        Cert::from_bytes(crate::tests::key("testy-new.pgp"))?])
                }
                fn check(&mut self, structure: MessageStructure) -> Result<()> {
                    for (i, layer) in structure.iter().enumerate() {
                        assert_eq!(i, 0);
                        if let MessageLayer::SignatureGroup { results } = layer
                        {
                            assert_eq!(results.len(), 1);
                            results[0].as_ref().unwrap();
                            assert!(results[0].is_ok());
                            return Ok(());
                        } else {
                            unreachable!();
                        }
                    }
                    unreachable!()
                }
            }

            let h = Helper {};
            let mut v = DetachedVerifierBuilder::from_bytes(&signature)?
                .with_policy(p, None, h)?;

            v.verify_bytes(data)?;
            v.verify_bytes(normalized_data)?;
        }

        Ok(())
    }
}