1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
use std::fmt;
use std::ops::{BitAnd, BitOr};

#[cfg(any(test, feature = "quickcheck"))]
use quickcheck::{Arbitrary, Gen};

use crate::types::Bitfield;

/// Describes how a key may be used, and stores additional information.
///
/// Key flags are described in [Section 5.2.3.21 of RFC 4880] and [Section 5.2.3.22
/// of RFC 4880bis].
///
/// [Section 5.2.3.21 of RFC 4880]: https://tools.ietf.org/html/rfc4880#section-5.2.3.21
/// [Section 5.2.3.22 of RFC 4880bis]: https://tools.ietf.org/html/draft-ietf-openpgp-rfc4880bis-09#section-5.2.3.22
///
/// # A note on equality
///
/// `PartialEq` compares the serialized form of the key flag sets.  If
/// you prefer to compare two key flag sets for semantic equality, you
/// should use [`KeyFlags::normalized_eq`].  The difference between
/// semantic equality and serialized equality is that semantic
/// equality ignores differences in the amount of padding.
///
///   [`KeyFlags::normalized_eq`]: #method.normalized_eq
///
/// # Examples
///
/// ```
/// use sequoia_openpgp as openpgp;
/// # use openpgp::Result;
/// use openpgp::cert::prelude::*;
/// use openpgp::policy::StandardPolicy;
///
/// # fn main() -> Result<()> {
/// let p = &StandardPolicy::new();
///
/// let (cert, _) =
///     CertBuilder::new()
///         .add_userid("Alice <alice@example.com>")
///         .add_transport_encryption_subkey()
///         .generate()?;
///
/// for subkey in cert.with_policy(p, None)?.keys().subkeys() {
///     // Key contains one Encryption subkey:
///     assert!(subkey.key_flags().unwrap().for_transport_encryption());
/// }
/// # Ok(()) }
/// ```
#[derive(Clone, PartialEq, Eq, Hash)]
pub struct KeyFlags(Bitfield);

impl fmt::Debug for KeyFlags {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        if self.for_certification() {
            f.write_str("C")?;
        }
        if self.for_signing() {
            f.write_str("S")?;
        }
        if self.for_transport_encryption() {
            f.write_str("Et")?;
        }
        if self.for_storage_encryption() {
            f.write_str("Er")?;
        }
        if self.for_authentication() {
            f.write_str("A")?;
        }
        if self.is_split_key() {
            f.write_str("D")?;
        }
        if self.is_group_key() {
            f.write_str("G")?;
        }

        let mut need_comma = false;
        for i in self.0.iter() {
            match i {
                KEY_FLAG_CERTIFY
                    | KEY_FLAG_SIGN
                    | KEY_FLAG_ENCRYPT_FOR_TRANSPORT
                    | KEY_FLAG_ENCRYPT_AT_REST
                    | KEY_FLAG_SPLIT_KEY
                    | KEY_FLAG_AUTHENTICATE
                    | KEY_FLAG_GROUP_KEY
                    => (),
                i => {
                    if need_comma { f.write_str(", ")?; }
                    write!(f, "#{}", i)?;
                    need_comma = true;
                },
            }
        }

        // Mention any padding, as equality is sensitive to this.
        let padding = self.0.padding_len();
        if padding > 0 {
            if need_comma { f.write_str(", ")?; }
            write!(f, "+padding({} bytes)", padding)?;
        }

        Ok(())
    }
}

impl BitAnd for &KeyFlags {
    type Output = KeyFlags;

    fn bitand(self, rhs: Self) -> KeyFlags {
        let l = self.as_slice();
        let r = rhs.as_slice();

        let mut c = Vec::with_capacity(std::cmp::min(l.len(), r.len()));
        for (l, r) in l.into_iter().zip(r.into_iter()) {
            c.push(l & r);
        }

        KeyFlags(c.into())
    }
}

impl BitOr for &KeyFlags {
    type Output = KeyFlags;

    fn bitor(self, rhs: Self) -> KeyFlags {
        let l = self.as_slice();
        let r = rhs.as_slice();

        // Make l the longer one.
        let (l, r) = if l.len() > r.len() {
            (l, r)
        } else {
            (r, l)
        };

        let mut l = l.to_vec();
        for (i, r) in r.into_iter().enumerate() {
            l[i] = l[i] | r;
        }

        KeyFlags(l.into())
    }
}

impl KeyFlags {
    /// Creates a new instance from `bits`.
    pub fn new<B: AsRef<[u8]>>(bits: B) -> Self {
        Self(bits.as_ref().to_vec().into())
    }

    /// Returns a new `KeyFlags` with all capabilities disabled.
    pub fn empty() -> Self {
        KeyFlags::new(&[])
    }

    /// Returns a slice containing the raw values.
    pub(crate) fn as_slice(&self) -> &[u8] {
        self.0.as_slice()
    }

    /// Compares two key flag sets for semantic equality.
    ///
    /// `KeyFlags`' implementation of `PartialEq` compares two key
    /// flag sets for serialized equality.  That is, the `PartialEq`
    /// implementation considers two key flag sets to *not* be equal
    /// if they have different amounts of padding.  This comparison
    /// function ignores padding.
    ///
    /// # Examples
    ///
    /// ```
    /// use sequoia_openpgp as openpgp;
    /// use openpgp::types::KeyFlags;
    ///
    /// # fn main() -> openpgp::Result<()> {
    /// let a = KeyFlags::new(&[0x1]);
    /// let b = KeyFlags::new(&[0x1, 0x0]);
    ///
    /// assert!(a != b);
    /// assert!(a.normalized_eq(&b));
    /// # Ok(()) }
    /// ```
    pub fn normalized_eq(&self, other: &Self) -> bool {
        self.0.normalized_eq(&other.0)
    }

    /// Returns whether the specified key flag is set.
    ///
    /// # Examples
    ///
    /// ```
    /// use sequoia_openpgp as openpgp;
    /// use openpgp::types::KeyFlags;
    ///
    /// # fn main() -> openpgp::Result<()> {
    /// // Key flags 0 and 2.
    /// let kf = KeyFlags::new(&[0x5]);
    ///
    /// assert!(kf.get(0));
    /// assert!(! kf.get(1));
    /// assert!(kf.get(2));
    /// assert!(! kf.get(3));
    /// assert!(! kf.get(8));
    /// assert!(! kf.get(80));
    /// # assert!(kf.for_certification());
    /// # Ok(()) }
    /// ```
    pub fn get(&self, bit: usize) -> bool {
        self.0.get(bit)
    }

    /// Sets the specified key flag.
    ///
    /// This also clears any padding (trailing NUL bytes).
    ///
    /// # Examples
    ///
    /// ```
    /// use sequoia_openpgp as openpgp;
    /// use openpgp::types::KeyFlags;
    ///
    /// # fn main() -> openpgp::Result<()> {
    /// let kf = KeyFlags::empty().set(0).set(2);
    ///
    /// assert!(kf.get(0));
    /// assert!(! kf.get(1));
    /// assert!(kf.get(2));
    /// assert!(! kf.get(3));
    /// # assert!(kf.for_certification());
    /// # Ok(()) }
    /// ```
    pub fn set(self, bit: usize) -> Self {
        Self(self.0.set(bit))
    }

    /// Clears the specified key flag.
    ///
    /// This also clears any padding (trailing NUL bytes).
    ///
    /// # Examples
    ///
    /// ```
    /// use sequoia_openpgp as openpgp;
    /// use openpgp::types::KeyFlags;
    ///
    /// # fn main() -> openpgp::Result<()> {
    /// let kf = KeyFlags::empty().set(0).set(2).clear(2);
    ///
    /// assert!(kf.get(0));
    /// assert!(! kf.get(1));
    /// assert!(! kf.get(2));
    /// assert!(! kf.get(3));
    /// # assert!(kf.for_certification());
    /// # Ok(()) }
    /// ```
    pub fn clear(self, bit: usize) -> Self {
        Self(self.0.clear(bit))
    }

    /// This key may be used to certify other keys.
    pub fn for_certification(&self) -> bool {
        self.get(KEY_FLAG_CERTIFY)
    }

    /// Declares that this key may be used to certify other keys.
    pub fn set_certification(self) -> Self {
        self.set(KEY_FLAG_CERTIFY)
    }

    /// Declares that this key may not be used to certify other keys.
    pub fn clear_certification(self) -> Self {
        self.clear(KEY_FLAG_CERTIFY)
    }

    /// This key may be used to sign data.
    pub fn for_signing(&self) -> bool {
        self.get(KEY_FLAG_SIGN)
    }

    /// Declares that this key may be used to sign data.
    pub fn set_signing(self) -> Self {
        self.set(KEY_FLAG_SIGN)
    }

    /// Declares that this key may not be used to sign data.
    pub fn clear_signing(self) -> Self {
        self.clear(KEY_FLAG_SIGN)
    }

    /// This key may be used to encrypt communications.
    pub fn for_transport_encryption(&self) -> bool {
        self.get(KEY_FLAG_ENCRYPT_FOR_TRANSPORT)
    }

    /// Declares that this key may be used to encrypt communications.
    pub fn set_transport_encryption(self) -> Self {
        self.set(KEY_FLAG_ENCRYPT_FOR_TRANSPORT)
    }

    /// Declares that this key may not be used to encrypt communications.
    pub fn clear_transport_encryption(self) -> Self {
        self.clear(KEY_FLAG_ENCRYPT_FOR_TRANSPORT)
    }

    /// This key may be used to encrypt storage.
    pub fn for_storage_encryption(&self) -> bool {
        self.get(KEY_FLAG_ENCRYPT_AT_REST)
    }

    /// Declares that this key may be used to encrypt storage.
    pub fn set_storage_encryption(self) -> Self {
        self.set(KEY_FLAG_ENCRYPT_AT_REST)
    }

    /// Declares that this key may not be used to encrypt storage.
    pub fn clear_storage_encryption(self) -> Self {
        self.clear(KEY_FLAG_ENCRYPT_AT_REST)
    }

    /// This key may be used for authentication.
    pub fn for_authentication(&self) -> bool {
        self.get(KEY_FLAG_AUTHENTICATE)
    }

    /// Declares that this key may be used for authentication.
    pub fn set_authentication(self) -> Self {
        self.set(KEY_FLAG_AUTHENTICATE)
    }

    /// Declares that this key may not be used for authentication.
    pub fn clear_authentication(self) -> Self {
        self.clear(KEY_FLAG_AUTHENTICATE)
    }

    /// The private component of this key may have been split
    /// using a secret-sharing mechanism.
    pub fn is_split_key(&self) -> bool {
        self.get(KEY_FLAG_SPLIT_KEY)
    }

    /// Declares that the private component of this key may have been
    /// split using a secret-sharing mechanism.
    pub fn set_split_key(self) -> Self {
        self.set(KEY_FLAG_SPLIT_KEY)
    }

    /// Declares that the private component of this key has not been
    /// split using a secret-sharing mechanism.
    pub fn clear_split_key(self) -> Self {
        self.clear(KEY_FLAG_SPLIT_KEY)
    }

    /// The private component of this key may be in possession of more
    /// than one person.
    pub fn is_group_key(&self) -> bool {
        self.get(KEY_FLAG_GROUP_KEY)
    }

    /// Declares that the private component of this key should not be
    /// in possession of more than one person.
    pub fn set_group_key(self) -> Self {
        self.set(KEY_FLAG_GROUP_KEY)
    }

    /// Returns whether no flags are set.
    pub fn is_empty(&self) -> bool {
        self.as_slice().iter().all(|b| *b == 0)
    }
}

/// This key may be used to certify other keys.
const KEY_FLAG_CERTIFY: usize = 0;

/// This key may be used to sign data.
const KEY_FLAG_SIGN: usize = 1;

/// This key may be used to encrypt communications.
const KEY_FLAG_ENCRYPT_FOR_TRANSPORT: usize = 2;

/// This key may be used to encrypt storage.
const KEY_FLAG_ENCRYPT_AT_REST: usize = 3;

/// The private component of this key may have been split by a
/// secret-sharing mechanism.
const KEY_FLAG_SPLIT_KEY: usize = 4;

/// This key may be used for authentication.
const KEY_FLAG_AUTHENTICATE: usize = 5;

/// The private component of this key may be in the possession of more
/// than one person.
const KEY_FLAG_GROUP_KEY: usize = 7;

#[cfg(any(test, feature = "quickcheck"))]
impl Arbitrary for KeyFlags {
    fn arbitrary<G: Gen>(g: &mut G) -> Self {
        Self::new(Vec::arbitrary(g))
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    quickcheck! {
        fn roundtrip(val: KeyFlags) -> bool {
            let mut q = KeyFlags::new(&val.as_slice());
            assert_eq!(val, q);
            assert!(val.normalized_eq(&q));

            // Add some padding to q.  Make sure they are still equal.
            q.0.raw.push(0);
            assert!(val != q);
            assert!(val.normalized_eq(&q));

            q.0.raw.push(0);
            assert!(val != q);
            assert!(val.normalized_eq(&q));

            true
        }
    }
}