1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
//! Rectangles and points.
#![allow(const_err)]

use sys::rect as ll;
use std::mem;
use std::ptr;
use std::ops::{Add, BitAnd, BitOr, Div, Mul, Neg, Sub};

/// The maximal integer value that can be used for rectangles.
///
/// This value is smaller than strictly needed, but is useful in ensuring that
/// rect sizes will never have to be truncated when clamping.
pub fn max_int_value() -> u32 {
    i32::max_value() as u32 / 2
}

/// The minimal integer value that can be used for rectangle positions
/// and points.
///
/// This value is needed, because otherwise the width of a rectangle created
/// from a point would be able to exceed the maximum width.
pub fn min_int_value() -> i32 {
    i32::min_value() / 2
}

fn clamp_size(val: u32) -> u32 {
    if val == 0 {
        1
    } else if val > max_int_value() {
        max_int_value()
    } else {
        val
    }
}

fn clamp_position(val: i32) -> i32 {
    if val > max_int_value() as i32 {
        max_int_value() as i32
    } else if val < min_int_value() {
        min_int_value()
    } else {
        val
    }
}

fn clamped_mul(a: i32, b: i32) -> i32 {
    match a.checked_mul(b) {
        Some(val) => val,
        None => {
            if (a < 0) ^ (b < 0) {
                min_int_value()
            } else {
                max_int_value() as i32
            }
        }
    }
}

/// A rectangle.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct Rect {
    raw: ll::SDL_Rect,
}

impl Rect {
    /// Creates a new rectangle from the given values.
    ///
    /// The width and height are clamped to ensure that the right and bottom
    /// sides of the rectangle does not exceed i32::max_value().
    /// (The value 2147483647, the maximal positive size of an i32)
    ///
    /// This means that the rect size will behave oddly if you move it very far
    /// to the right or downwards on the screen.
    pub fn new(x: i32, y: i32, width: u32, height: u32) -> Rect {
        let raw = ll::SDL_Rect {
            x: clamp_position(x),
            y: clamp_position(y),
            w: clamp_size(width) as i32,
            h: clamp_size(height) as i32,
        };
        Rect { raw: raw }
    }

    /// Creates a new rectangle centered on the given position.
    ///
    /// The width and height are clamped to ensure that the right and bottom
    /// sides of the rectangle does not exceed i32::max_value().
    /// (The value 2147483647, the maximal positive size of an i32)
    ///
    /// This means that the rect size will behave oddly if you move it very far
    /// to the right or downwards on the screen.
    pub fn from_center<P>(center: P, width: u32, height: u32)
            -> Rect where P: Into<Point> {
        let raw = ll::SDL_Rect {
            x: 0,
            y: 0,
            w: clamp_size(width) as i32,
            h: clamp_size(height) as i32,
        };
        let mut rect = Rect { raw: raw };
        rect.center_on(center.into());
        rect
    }

    /// The horizontal position of this rectangle.
    pub fn x(&self) -> i32 {
        self.raw.x
    }

    /// The vertical position of this rectangle.
    pub fn y(&self) -> i32 {
        self.raw.y
    }

    /// The width of this rectangle.
    pub fn width(&self) -> u32 {
        self.raw.w as u32
    }

    /// The height of this rectangle.
    pub fn height(&self) -> u32 {
        self.raw.h as u32
    }

    /// Returns the width and height of this rectangle.
    pub fn size(&self) -> (u32, u32) {
        (self.width(), self.height())
    }

    /// Sets the horizontal position of this rectangle to the given value,
    /// clamped to be less than or equal to i32::max_value() / 2.
    pub fn set_x(&mut self, x: i32) {
        self.raw.x = clamp_position(x);
    }

    /// Sets the vertical position of this rectangle to the given value,
    /// clamped to be less than or equal to i32::max_value() / 2.
    pub fn set_y(&mut self, y: i32) {
        self.raw.y = clamp_position(y);
    }

    /// Sets the width of this rectangle to the given value,
    /// clamped to be less than or equal to i32::max_value() / 2.
    pub fn set_width(&mut self, width: u32) {
        self.raw.w = clamp_size(width) as i32;
    }

    /// Sets the height of this rectangle to the given value,
    /// clamped to be less than or equal to i32::max_value() / 2.
    pub fn set_height(&mut self, height: u32) {
        self.raw.h = clamp_size(height) as i32;
    }

    /// Returns the x-position of the left side of this rectangle.
    pub fn left(&self) -> i32 {
        self.raw.x
    }

    /// Returns the x-position of the right side of this rectangle.
    pub fn right(&self) -> i32 {
        self.raw.x + self.raw.w
    }

    /// Returns the y-position of the top side of this rectangle.
    pub fn top(&self) -> i32 {
        self.raw.y
    }

    /// Returns the y-position of the bottom side of this rectangle.
    pub fn bottom(&self) -> i32 {
        self.raw.y + self.raw.h
    }

    /// Returns the center position of this rectangle.
    ///
    /// Note that if the width or height is not a multiple of two,
    /// the center will be rounded down.
    ///
    /// # Example
    ///
    /// ```
    /// use sdl2::rect::{Rect,Point};
    /// let rect = Rect::new(1,0,2,3);
    /// assert_eq!(Point::new(2,1),rect.center());
    /// ```
    pub fn center(&self) -> Point {
        let x = self.raw.x + (self.raw.w / 2);
        let y = self.raw.y + (self.raw.h / 2);
        Point::new(x, y)
    }

    /// Returns the top-left corner of this rectangle.
    ///
    /// # Example
    ///
    /// ```
    /// use sdl2::rect::{Rect, Point};
    /// let rect = Rect::new(1, 0, 2, 3);
    /// assert_eq!(Point::new(1, 0), rect.top_left());
    /// ```
    pub fn top_left(&self) -> Point {
        Point::new(self.left(), self.top())
    }

    /// Returns the top-right corner of this rectangle.
    ///
    /// # Example
    ///
    /// ```
    /// use sdl2::rect::{Rect, Point};
    /// let rect = Rect::new(1, 0, 2, 3);
    /// assert_eq!(Point::new(3, 0), rect.top_right());
    /// ```
    pub fn top_right(&self) -> Point {
        Point::new(self.right(), self.top())
    }

    /// Returns the bottom-left corner of this rectangle.
    ///
    /// # Example
    ///
    /// ```
    /// use sdl2::rect::{Rect, Point};
    /// let rect = Rect::new(1, 0, 2, 3);
    /// assert_eq!(Point::new(1, 3), rect.bottom_left());
    /// ```
    pub fn bottom_left(&self) -> Point {
        Point::new(self.left(), self.bottom())
    }

    /// Returns the bottom-right corner of this rectangle.
    ///
    /// # Example
    ///
    /// ```
    /// use sdl2::rect::{Rect, Point};
    /// let rect = Rect::new(1, 0, 2, 3);
    /// assert_eq!(Point::new(3, 3), rect.bottom_right());
    /// ```
    pub fn bottom_right(&self) -> Point {
        Point::new(self.right(), self.bottom())
    }

    /// Sets the position of the right side of this rectangle to the given
    /// value, clamped to be less than or equal to i32::max_value() / 2.
    pub fn set_right(&mut self, right: i32) {
        self.raw.x = clamp_position(clamp_position(right) - self.raw.w);
    }

    /// Sets the position of the bottom side of this rectangle to the given
    /// value, clamped to be less than or equal to i32::max_value() / 2.
    pub fn set_bottom(&mut self, bottom: i32) {
        self.raw.y = clamp_position(clamp_position(bottom) - self.raw.h);
    }

    /// Centers the rectangle on the given point.
    pub fn center_on<P>(&mut self, point: P) where P: Into<(i32, i32)> {
        let (x, y) = point.into();
        self.raw.x = clamp_position(clamp_position(x) - self.raw.w / 2);
        self.raw.y = clamp_position(clamp_position(y) - self.raw. h / 2);
    }

    /// Move this rect and clamp the positions to prevent over/underflow.
    /// This also clamps the size to prevent overflow.
    pub fn offset(&mut self, x: i32, y: i32) {
        match self.raw.x.checked_add(x) {
            Some(val) => self.raw.x = clamp_position(val),
            None => {
                if x >= 0 {
                    self.raw.x = max_int_value() as i32;
                } else {
                    self.raw.x = i32::min_value();
                }
            },
        }
        match self.raw.y.checked_add(y) {
            Some(val) => self.raw.y = clamp_position(val),
            None => {
                if y >= 0 {
                    self.raw.y = max_int_value() as i32;
                } else {
                    self.raw.y = i32::min_value();
                }
            },
        }
    }

    /// Moves this rect to the given position after clamping the values.
    pub fn reposition<P>(&mut self, point: P) where P: Into<(i32, i32)> {
        let (x, y) = point.into();
        self.raw.x = clamp_position(x);
        self.raw.y = clamp_position(y);
    }

    /// Resizes this rect to the given size after clamping the values.
    pub fn resize(&mut self, width: u32, height: u32) {
        self.raw.w = clamp_size(width) as i32;
        self.raw.h = clamp_size(height) as i32;
    }

    /// Checks whether this rect contains a given point.
    pub fn contains<P>(&self, point: P) -> bool where P: Into<(i32, i32)> {
        let (x, y) = point.into();
        let inside_x = x >= self.left() && x <= self.right();
        inside_x && (y >= self.top() && y <= self.bottom())
    }

    /// Returns the underlying C Rect.
    pub fn raw(&self) -> *const ll::SDL_Rect {
        &self.raw
    }

    pub fn raw_mut(&mut self) -> *mut ll::SDL_Rect {
        self.raw() as *mut _
    }

    pub fn raw_slice(slice: &[Rect]) -> *const ll::SDL_Rect {
        unsafe {
            mem::transmute(slice.as_ptr())
        }
    }

    pub fn from_ll(raw: ll::SDL_Rect) -> Rect {
        Rect::new(raw.x, raw.y, raw.w as u32, raw.h as u32)
    }

    /// Calculate a minimal rectangle enclosing a set of points.
    /// If a clipping rectangle is given, only points that are within it will be
    /// considered.
    pub fn from_enclose_points(points: &[Point], clipping_rect: Option<Rect>)
            -> Option<Rect> {

        if points.len() == 0 {
            return None;
        }

        let mut out = unsafe {
            mem::uninitialized()
        };

        let clip_ptr = match clipping_rect.as_ref() {
            Some(r) => r.raw(),
            None => ptr::null()
        };

        let result = unsafe {
            ll::SDL_EnclosePoints(
                Point::raw_slice(points),
                points.len() as i32,
                clip_ptr,
                &mut out
            ) != 0
        };

        if result {
            // Return an error if the dimensions are too large.
            Some(Rect::from_ll(out))
        } else {
            None
        }
    }

    /// Determine whether two rectangles intersect.
    pub fn has_intersection(&self, other: Rect) -> bool {
        unsafe {
            ll::SDL_HasIntersection(self.raw(), other.raw()) != 0
        }
    }

    /// Calculate the intersection of two rectangles.
    /// The bitwise AND operator `&` can also be used.
    pub fn intersection(&self, other: Rect) -> Option<Rect> {
        let mut out = unsafe { mem::uninitialized() };

        let success = unsafe {
            ll::SDL_IntersectRect(self.raw(), other.raw(), &mut out) != 0
        };

        if success {
            Some(Rect::from_ll(out))
        } else {
            None
        }
    }

    /// Calculate the union of two rectangles.
    /// The bitwise OR operator `|` can also be used.
    pub fn union(&self, other: Rect) -> Rect {
        let mut out = unsafe {
            mem::uninitialized()
        };

        unsafe {
            // If `self` and `other` are both empty, `out` remains uninitialized.
            // Because empty rectangles aren't allowed in Rect, we don't need to worry about this.
            ll::SDL_UnionRect(self.raw(), other.raw(), &mut out)
        };

        Rect::from_ll(out)
    }

    /// Calculates the intersection of a rectangle and a line segment and
    /// returns the points of their intersection.
    pub fn intersect_line(&self, start: Point, end: Point)
            -> Option<(Point, Point)> {

        let (mut start_x, mut start_y) = (start.x(), start.y());
        let (mut end_x, mut end_y) = (end.x(), end.y());

        let intersected = unsafe {
            ll::SDL_IntersectRectAndLine(
                self.raw(),
                &mut start_x, &mut start_y,
                &mut end_x, &mut end_y
            ) != 0
        };

        if intersected {
            Some((Point::new(start_x, start_y), Point::new(end_x, end_y)))
        } else {
            None
        }
    }
}

impl Into<(i32, i32, u32, u32)> for Rect {
    fn into(self) -> (i32, i32, u32, u32) {
        (self.raw.x, self.raw.y, self.raw.w as u32, self.raw.h as u32)
    }
}

impl From<(i32, i32, u32, u32)> for Rect {
    fn from((x, y, width, height): (i32, i32, u32, u32)) -> Rect {
        Rect::new(x, y, width, height)
    }
}

// Intersection
impl BitAnd<Rect> for Rect {
    type Output = Option<Rect>;
    fn bitand(self, rhs: Rect) -> Option<Rect> { self.intersection(rhs) }
}

// Union
impl BitOr<Rect> for Rect {
    type Output = Rect;
    fn bitor(self, rhs: Rect) -> Rect { self.union(rhs) }
}

/// Immutable point type, consisting of x and y.
#[derive(Copy, Clone, Eq, PartialEq, Debug, Hash)]
pub struct Point {
    raw: ll::SDL_Point
}

impl From<(i32, i32)> for Point {
    fn from((x, y): (i32, i32)) -> Point {
        Point::new(x, y)
    }
}

impl Into<(i32, i32)> for Point {
    fn into(self) -> (i32, i32) {
        (self.x(), self.y())
    }
}

impl Point {
    /// Creates a new point from the given coordinates.
    pub fn new(x: i32, y: i32) -> Point {
        Point {
            raw: ll::SDL_Point {
                x: clamp_position(x),
                y: clamp_position(y),
            }
        }
    }

    pub fn from_ll(raw: ll::SDL_Point) -> Point {
        Point::new(raw.x, raw.y)
    }

    pub fn raw_slice(slice: &[Point]) -> *const ll::SDL_Point {
        unsafe {
            mem::transmute(slice.as_ptr())
        }
    }

    pub fn raw(&self) -> *const ll::SDL_Point {
        &self.raw
    }

    /// Returns a new point by shifting this point's coordinates by the given
    /// x and y values.
    pub fn offset(&self, x: i32, y: i32) -> Point {
        let x = match self.raw.x.checked_add(x) {
            Some(val) => val,
            None => {
                if x < 0 {
                    min_int_value()
                } else {
                    max_int_value() as i32
                }
            }
        };
        let y = match self.raw.y.checked_add(y) {
            Some(val) => val,
            None => {
                if y < 0 {
                    min_int_value()
                } else {
                    max_int_value() as i32
                }
            }
        };
        Point::new(x, y)
    }

    /// Returns a new point by multiplying this point's coordinates by the
    /// given scale factor.
    pub fn scale(&self, f: i32) -> Point {
        Point::new(clamped_mul(self.raw.x, f),
                   clamped_mul(self.raw.y, f))
    }

    /// Returns the x-coordinate of this point.
    pub fn x(&self) -> i32 {
        self.raw.x
    }

    /// Returns the y-coordinate of this point.
    pub fn y(&self) -> i32 {
        self.raw.y
    }
}

impl Add for Point {
    type Output = Point;

    fn add(self, rhs: Point) -> Point {
        self.offset(rhs.x(), rhs.y())
    }
}

impl Neg for Point {
    type Output = Point;

    fn neg(self) -> Point {
        Point::new(-self.x(), -self.y())
    }
}

impl Sub for Point {
    type Output = Point;

    fn sub(self, rhs: Point) -> Point {
        self.offset(-rhs.x(), -rhs.y())
    }
}

impl Mul<i32> for Point {
    type Output = Point;

    fn mul(self, rhs: i32) -> Point {
        self.scale(rhs)
    }
}

impl Div<i32> for Point {
    type Output = Point;

    fn div(self, rhs: i32) -> Point {
        Point::new(self.x() / rhs, self.y() / rhs)
    }
}

#[cfg(test)]
mod test {
    use super::{Rect, Point, max_int_value, min_int_value};

    /// Used to compare "literal" (unclamped) rect values.
    fn tuple(x: i32, y: i32, w: u32, h: u32) -> (i32, i32, u32, u32) {
        (x, y, w, h)
    }

    #[test]
    fn enclose_points_valid() {
        assert_eq!(
            Some(tuple(2, 4, 4, 6)),
            Rect::from_enclose_points(
                &[Point::new(2, 4), Point::new(5,9)],
                None
            ).map(|r| r.into())
        );
    }

    #[test]
    fn enclose_points_outside_clip_rect() {
        assert_eq!(
            Rect::from_enclose_points(
                &[Point::new(0, 0), Point::new(10,10)],
                Some(Rect::new(3, 3, 1, 1))),
            None
        );
    }

    #[test]
    fn enclose_points_max_values() {
        // Try to enclose the top-left-most and bottom-right-most points.
        assert_eq!(
            Some(tuple(
                min_int_value(), min_int_value(),
                max_int_value(), max_int_value()
            )),
            Rect::from_enclose_points(
                &[Point::new(i32::min_value(), i32::min_value()),
                Point::new(i32::max_value(), i32::max_value())], None
            ).map(|r| r.into())
        );
    }

    #[test]
    fn has_intersection() {
        let rect = Rect::new(0, 0, 10, 10);
        assert!(rect.has_intersection(Rect::new(9, 9, 10, 10)));
        // edge
        assert!(! rect.has_intersection(Rect::new(10, 10, 10, 10)));
        // out
        assert!(! rect.has_intersection(Rect::new(11, 11, 10, 10)));
    }

    #[test]
    fn intersection() {
        let rect = Rect::new(0, 0, 10, 10);
        assert_eq!(
            rect & Rect::new(9, 9, 10, 10),
            Some(Rect::new(9, 9, 1, 1))
        );
        assert_eq!(
            rect & Rect::new(11, 11, 10, 10),
            None
        );
    }

    #[test]
    fn union() {
        assert_eq!(
            Rect::new(0, 0, 1, 1) | Rect::new(9, 9, 1, 1),
            Rect::new(0, 0, 10, 10)
        );
    }

    #[test]
    fn intersect_line() {
        assert_eq!(
            Rect::new(1, 1, 5, 5).intersect_line(
                Point::new(0, 0), Point::new(10, 10)
            ),
            Some((Point::new(1, 1), Point::new(5, 5)))
        );
    }

    #[test]
    fn clamp_size_zero() {
        assert_eq!(
            tuple(0, 0, 1, 1),
            Rect::new(0, 0, 0, 0).into()
        );
    }

    #[test]
    fn clamp_position_min() {
        assert_eq!(
            tuple(min_int_value(), min_int_value(), 1, 1),
            Rect::new(i32::min_value(), i32::min_value(), 1, 1).into()
        );
    }

    #[test]
    fn clamp_size_max() {
        assert_eq!(
            tuple(0, 0, max_int_value(), max_int_value()),
            Rect::new(0, 0, max_int_value() + 1, max_int_value() + 1).into()
        );
    }

    #[test]
    fn clamp_i32_max() {
        assert_eq!(
            tuple(0, 0, max_int_value(), max_int_value()),
            Rect::new(
                0, 0, i32::max_value() as u32, i32::max_value() as u32
            ).into()
        )
    }

    #[test]
    fn clamp_position_max() {
        assert_eq!(
            tuple(max_int_value() as i32, max_int_value() as i32, 1, 1),
            Rect::new(
                max_int_value() as i32 + 1, max_int_value() as i32 + 1, 1, 1
            ).into()
        );
    }

    #[test]
    fn rect_into() {
        let test: (i32, i32, u32, u32) = (-11, 5, 50, 20);
        assert_eq!(
            test,
            Rect::new(-11, 5, 50, 20).into()
        );
    }

    #[test]
    fn rect_from() {
        assert_eq!(
            Rect::from((-11, 5, 50, 20)),
            Rect::new(-11, 5, 50, 20)
        );
    }

    #[test]
    fn point_into() {
        let test: (i32, i32) = (-11, 5);
        assert_eq!(
            test,
            Point::new(-11, 5).into()
        );
    }

    #[test]
    fn point_from() {
        let test: (i32, i32) = (-11, 5);
        assert_eq!(
            test,
            Point::new(-11, 5).into()
        );
    }

    #[test]
    fn point_add() {
        assert_eq!(
            Point::new(-5, 7),
            Point::new(-11, 5) + Point::new(6, 2)
        );
    }

    #[test]
    fn point_sub() {
        assert_eq!(
            Point::new(-17, 3),
            Point::new(-11, 5) - Point::new(6, 2)
        );
    }

    #[test]
    fn point_mul() {
        assert_eq!(
            Point::new(-33, 15),
            Point::new(-11, 5) * 3
        );
    }

    #[test]
    fn point_mul_clamp() {
        assert_eq!(
            Point::new(0x7fffffff, -0x7fffffff),
            Point::new(-1000000, 5000000) * -3000000
        );
    }

    #[test]
    fn point_div() {
        assert_eq!(
            Point::new(-3, 1),
            Point::new(-11, 5) / 3
        );
    }
 }