1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
use serde::{Deserialize, Serialize};

use crate::time::{Diff, Time, TimeSpan};

#[derive(Deserialize, Serialize, Clone, Debug, PartialEq)]
pub struct Lerp {
    original_values: Vec<Time>,
    lerped_values: Vec<Time>,
}

impl Lerp {
    fn new(original: Vec<Time>, lerped: Vec<Time>) -> Lerp {
        //assert!(original.is_sorted()); // is_sorted is nightly-only
        //assert!(lerped.is_sorted());
        assert_eq!(original.len(), lerped.len());
        Lerp {
            original_values: original,
            lerped_values: lerped,
        }
    }

    pub fn identity(start: Time, end: Time) -> Lerp {
        assert!(end >= start);
        Lerp::new(vec![start, end], vec![start, end])
    }

    pub fn first(&self) -> Time {
        *self.lerped_values.first().unwrap()
    }

    pub fn last(&self) -> Time {
        *self.lerped_values.last().unwrap()
    }

    pub fn times(&self) -> &[Time] {
        &self.lerped_values
    }

    pub fn lerp(&self, t: Time) -> Option<Time> {
        use LerpResult::*;
        match lerp_interval(t, &self.original_values, &self.lerped_values) {
            AfterEnd(_) => None,
            BeforeStart(_) => None,
            SingleTime(t) => Some(t),
            Interval(t, _) => Some(t),
        }
    }

    pub fn lerp_clamped(&self, t: Time) -> Time {
        use LerpResult::*;
        match lerp_interval(t, &self.original_values, &self.lerped_values) {
            AfterEnd(_) => self.last(),
            BeforeStart(_) => self.first(),
            SingleTime(t) => t,
            Interval(t, _) => t,
        }
    }

    pub fn unlerp(&self, t: Time) -> Option<Time> {
        use LerpResult::*;
        match lerp_interval(t, &self.lerped_values, &self.original_values) {
            AfterEnd(_) => None,
            BeforeStart(_) => None,
            SingleTime(t) => Some(t),
            Interval(t, _) => Some(t),
        }
    }

    pub fn unlerp_clamped(&self, t: Time) -> Time {
        use LerpResult::*;
        match lerp_interval(t, &self.lerped_values, &self.original_values) {
            AfterEnd(_) => *self.original_values.last().unwrap(),
            BeforeStart(_) => *self.original_values.first().unwrap(),
            SingleTime(t) => t,
            Interval(t, _) => t,
        }
    }

    pub fn unlerp_extended(&self, t: Time) -> Time {
        use LerpResult::*;
        match lerp_interval(t, &self.lerped_values, &self.original_values) {
            AfterEnd(t) => *self.original_values.last().unwrap() + t,
            BeforeStart(t) => *self.original_values.first().unwrap() + t,
            SingleTime(t) => t,
            Interval(t, _) => t,
        }
    }

    pub fn add_lerp(&mut self, time_from: Time, time_to: Time) {
        let local_time_from = self.unlerp_clamped(time_from);
        let idx = match self.original_values.binary_search(&local_time_from) {
            Ok(idx) => idx,
            Err(idx) => {
                self.original_values.insert(idx, local_time_from);
                self.lerped_values.insert(idx, time_from);
                idx
            }
        };
        let shift_right = time_to > self.lerped_values[idx];
        self.lerped_values[idx] = time_to;
        if shift_right {
            for v in &mut self.lerped_values[(idx + 1)..] {
                *v = (*v).max(time_to);
            }
        } else {
            for v in &mut self.lerped_values[..idx] {
                *v = (*v).min(time_to);
            }
        }
    }

    pub fn with_new_lerp(&self, time_from: Time, time_to: Time) -> Lerp {
        let mut ret = self.clone();
        ret.add_lerp(time_from, time_to);
        ret
    }
}

enum LerpResult {
    AfterEnd(Diff),
    BeforeStart(Diff),
    SingleTime(Time),
    Interval(Time, Time),
}

fn lerp_interval(t: Time, orig: &[Time], new: &[Time]) -> LerpResult {
    debug_assert!(orig.len() == new.len());

    if t > *orig.last().unwrap() {
        LerpResult::AfterEnd(t - *orig.last().unwrap())
    } else if t < *orig.first().unwrap() {
        LerpResult::BeforeStart(t - *orig.first().unwrap())
    } else {
        let (begin, end) = search_interval(t, orig);
        if new[begin] == new[end] {
            LerpResult::SingleTime(new[begin])
        } else if orig[begin] == orig[end] {
            LerpResult::Interval(new[begin], new[end])
        } else {
            debug_assert!(end == begin + 1);
            let orig_span = TimeSpan::new(orig[begin], orig[end]);
            let new_span = TimeSpan::new(new[begin], new[end]);
            LerpResult::SingleTime(orig_span.interpolate_to(t, new_span))
        }
    }
}

// Assumes that `slice` is sorted, and that slice[0] <= x <= slice.last().unwrap().
//
// Returns a pair of indices (a, b) such that
// * slice[a] <= x
// * slice[b] >= x,
// and the interval (a, b) is the largest possible such interval.
fn search_interval(x: Time, slice: &[Time]) -> (usize, usize) {
    debug_assert!(slice[0] <= x && x <= *slice.last().unwrap());

    match slice.binary_search(&x) {
        Ok(idx) => {
            // We found one matching index, but there could be lots of them.
            let end = slice[(idx + 1)..]
                .iter()
                .position(|&y| y > x)
                .map(|i| i + idx)
                .unwrap_or(slice.len() - 1);

            let begin = slice[..idx]
                .iter()
                .rev()
                .position(|&y| y < x)
                .map(|i| idx - i)
                .unwrap_or(0);

            (begin, end)
        }
        Err(idx) => {
            // Under our assumptions above, idx must be positive, and strictly less than slice.len().
            debug_assert!(0 < idx && idx < slice.len());
            (idx - 1, idx)
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_search_interval() {
        fn search(x: i64, xs: &[i64]) -> (usize, usize) {
            let xs: Vec<_> = xs.iter().cloned().map(Time::from_micros).collect();
            search_interval(Time::from_micros(x), &xs)
        }
        assert_eq!((0, 0), search(1, &[1, 2, 3]));
        assert_eq!((2, 2), search(3, &[1, 2, 3]));
        assert_eq!((1, 2), search(3, &[1, 2, 4]));
        assert_eq!((1, 3), search(1, &[0, 1, 1, 1, 2]));
        assert_eq!((1, 3), search(1, &[0, 1, 1, 1]));
        assert_eq!((0, 2), search(1, &[1, 1, 1, 2]));
        assert_eq!((0, 2), search(1, &[1, 1, 1]));
    }

    fn t(x: i64) -> Time {
        Time::from_micros(x)
    }
    macro_rules! tvec {
        [$($t:tt)*] => {
            vec![$($t)*].into_iter().map(Time::from_micros).collect::<Vec<_>>()
        }
    }

    #[test]
    fn add_lerp() {
        let lerp = Lerp::new(tvec![0, 100], tvec![0, 100]);

        let out = lerp.with_new_lerp(t(50), t(80));
        assert_eq!(out.original_values, tvec![0, 50, 100]);
        assert_eq!(out.lerped_values, tvec![0, 80, 100]);

        let out = lerp.with_new_lerp(t(50), t(200));
        assert_eq!(out.original_values, tvec![0, 50, 100]);
        assert_eq!(out.lerped_values, tvec![0, 200, 200]);

        let out = lerp.with_new_lerp(t(100), t(150));
        assert_eq!(out.original_values, tvec![0, 100]);
        assert_eq!(out.lerped_values, tvec![0, 150]);

        let lerp = Lerp::new(tvec![0, 100], tvec![0, 200]);
        let out = lerp.with_new_lerp(t(100), t(150));
        assert_eq!(out.original_values, tvec![0, 50, 100]);
        assert_eq!(out.lerped_values, tvec![0, 150, 200]);
    }

    #[test]
    fn unlerp() {
        let lerp = Lerp::new(tvec![1, 101], tvec![201, 301]);
        assert_eq!(lerp.unlerp(t(201)), Some(t(1)));
        assert_eq!(lerp.unlerp(t(301)), Some(t(101)));
        assert_eq!(lerp.unlerp(t(200)), None);
        assert_eq!(lerp.unlerp(t(302)), None);

        assert_eq!(lerp.unlerp_clamped(t(200)), t(1));
        assert_eq!(lerp.unlerp_clamped(t(302)), t(101));

        assert_eq!(lerp.unlerp_extended(t(200)), t(0));
        assert_eq!(lerp.unlerp_extended(t(199)), t(0));
        assert_eq!(lerp.unlerp_extended(t(302)), t(102));
    }
}