1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
pub mod solver {

    use std::{
        collections::{BTreeSet, HashMap, HashSet, VecDeque},
        time::{Duration, Instant},
        vec,
    };
    /// A boolean variable
    pub type Var = usize;
    /// A literal is either a variable or a negation of a variable.
    /// (0, true) means x0 and (0, false) means ¬x0.
    pub type Lit = (Var, bool);
    pub trait Negation {
        fn neg(self) -> Self;
    }
    impl Negation for Lit {
        fn neg(self) -> Self {
            (self.0, !self.1)
        }
    }

    #[derive(PartialEq, Debug, Copy, Clone)]
    /// The status of a problem that solver solved.
    /// - `Sat` a solver found that a given problem is SATISFIABLE.
    /// - `Unsat` a solver found that a given problem is UNSATISFIABLE.
    /// - `Indeterminate` a solver stopped searching.
    pub enum Status {
        Sat,
        Unsat,
        Indeterminate,
    }

    #[derive(Debug, Default)]
    // A SAT Solver
    pub struct Solver {
        // the number of variables
        n: usize,
        // assignments for each variable
        pub assigns: Vec<bool>,
        // all clauses(original + learnt)
        clauses: Vec<Vec<Lit>>,
        // clauses that may be conflicted or propagated if a `lit` is false.
        watchers: HashMap<Lit, Vec<usize>>,
        // a clause index represents that a variable is forced to be assigned.
        reason: Vec<Option<usize>>,
        // decision level(0: unassigned, 1: minimum level)
        level: Vec<usize>,
        // variables aren't assigned yet.
        unselected_vars: BTreeSet<Var>,
        // assigned variables
        que: VecDeque<Var>,
        // the head index of `que` points unprocessed elements
        head: usize,
        // the solver status. this value may be set by the functions `add_clause` and `solve`.
        pub status: Option<Status>,
    }

    impl Solver {
        /// Enqueue a variable to assign a `value` to a boolean `assign`
        fn enqueue(&mut self, var: Var, assign: bool, reason: Option<usize>) {
            debug_assert!(self.level[var] == 0);
            debug_assert!(self.unselected_vars.contains(&var));
            self.unselected_vars.remove(&var);
            self.assigns[var] = assign;
            self.reason[var] = reason;
            self.level[var] = if let Some(last) = self.que.back() {
                self.level[*last]
            } else {
                1
            };
            self.que.push_back(var);
        }

        // Create a new space for one variable.
        pub fn new_var(&mut self) {
            self.unselected_vars.insert(self.n);
            self.n += 1;
            self.assigns.push(false);
            self.reason.push(None);
            self.level.push(0);
        }

        /// This method is only for internal usage and almost same as `add_clause`
        /// But, this method doesn't grow the size of array.
        fn add_clause_unchecked(&mut self, clause: &[Lit]) {
            debug_assert!(clause.len() >= 2);
            let clause_idx = self.clauses.len();
            self.watchers
                .entry(clause[0].neg())
                .or_insert_with(Vec::new)
                .push(clause_idx);
            self.watchers
                .entry(clause[1].neg())
                .or_insert_with(Vec::new)
                .push(clause_idx);

            self.clauses.push(clause.to_vec());
        }
        /// Add a new clause to `clauses` and watch a clause.
        /// If a variable is greater than the size of array, grow it.
        /// # Arguments
        /// * `clause` - a clause has one or some literal variables
        pub fn add_clause(&mut self, clause: &[Lit]) {
            // grow the space of array variables.
            clause.iter().for_each(|c| {
                while c.0 >= self.assigns.len() {
                    self.new_var();
                }
            });

            // Simplify a clause
            let mut clause = clause.to_vec();
            clause.sort();
            let mut len = 0;
            for i in 0..clause.len() {
                let mut remove = false;
                if i >= 1 {
                    // x0 v !x0 means a clause is already satisfied.
                    // you don't need to add it.
                    if clause[i] == clause[i - 1].neg() {
                        return;
                    }
                    // x0 v x0 duplicated
                    if clause[i] == clause[i - 1] {
                        remove = true;
                    }
                }
                let lit = clause[i];
                //already assigned
                if self.level[lit.0] > 0 {
                    // a clause is already satisfied. You don't need to add it.
                    if self.assigns[lit.0] == lit.1 {
                        return;
                    } else {
                        // a literal is already false. You can remove it from a clause.
                        remove = true;
                    }
                }

                if !remove {
                    clause[len] = lit;
                    len += 1;
                }
            }
            clause.truncate(len);

            if clause.len() == 0 {
                // Empty clause
                self.status = Some(Status::Unsat);
                return;
            } else if clause.len() == 1 {
                // Unit Clause
                let c = clause[0];
                // already assigned
                if self.level[c.0] > 0 {
                    if self.assigns[c.0] != c.1 {
                        self.status = Some(Status::Unsat);
                    }
                    return;
                }
                self.enqueue(c.0, c.1, None);
                // If the conflict happnes at the root level(decision level: 0), which means that a given problem is UNSATISFIABLE.
                if self.propagate().is_some() {
                    self.status = Some(Status::Unsat);
                }
                return;
            } else {
                debug_assert!(clause.len() >= 2);
                let clause_idx = self.clauses.len();
                self.watchers
                    .entry(clause[0].neg())
                    .or_insert_with(Vec::new)
                    .push(clause_idx);
                self.watchers
                    .entry(clause[1].neg())
                    .or_insert_with(Vec::new)
                    .push(clause_idx);
                self.clauses.push(clause.to_vec());
            }
        }

        /// Propagate it by all enqueued values and check conflicts.
        /// If a conflict is detected, this function returns a conflicted clause index.
        /// `None` is no conflicts.
        fn propagate(&mut self) -> Option<usize> {
            let mut conflict = None;
            let mut update_watchers = VecDeque::new();
            'conflict: while self.head < self.que.len() {
                debug_assert_eq!(conflict, None);
                let p = {
                    let v = self.que[self.head];
                    self.head += 1;
                    (v, self.assigns[v])
                };
                let false_p = p.neg();
                debug_assert!(self.level[p.0] > 0);

                if let Some(watcher) = self.watchers.get_mut(&p) {
                    let mut idx = 0;
                    'next_clause: while idx < watcher.len() {
                        debug_assert!(idx < watcher.len());
                        let cr = watcher[idx];
                        idx += 1;
                        let clause = &mut self.clauses[cr];
                        debug_assert!(clause[0] == false_p || clause[1] == false_p);

                        // make sure that the clause[1] is the false literal.
                        if clause[0] == false_p {
                            clause.swap(0, 1);
                        }
                        let first = clause[0];
                        // already satisfied
                        if self.level[first.0] > 0 && self.assigns[first.0] == first.1 {
                            debug_assert!(first != clause[1]);
                            continue 'next_clause;
                        }

                        for k in 2..clause.len() {
                            let lit = clause[k];
                            // Found a literal isn't false(true or undefined)
                            if self.level[lit.0] == 0 || self.assigns[lit.0] == lit.1 {
                                clause.swap(1, k);

                                watcher[idx - 1] = *watcher.last().unwrap();
                                watcher.pop();

                                update_watchers.push_back((clause[1].neg(), cr));
                                // NOTE
                                // Don't increase `idx` because you replace and the idx element with the last one.
                                idx -= 1;
                                continue 'next_clause;
                            }
                        }
                        debug_assert_eq!(watcher[idx - 1], cr);

                        if self.level[first.0] > 0 {
                            debug_assert!(self.assigns[first.0] != first.1);
                            // CONFLICT
                            // a first literal(clause[0]) is false.
                            // clause[1] is a false
                            // clause[2..len] is a false

                            self.head = self.que.len();
                            conflict = Some(cr);
                            break 'conflict;
                        } else {
                            // UNIT PROPAGATION
                            // a first literal(clause[0]) isn't assigned.
                            // clause[1] is a false
                            // clause[2..len] is a false

                            let (var, sign) = first;
                            debug_assert_eq!(self.level[var], 0);
                            // NOTE
                            // I don't know how to handle this borrowing problem. Please help me.
                            // self.enqueue(var, sign, Some(cr));
                            self.unselected_vars.remove(&var);
                            self.assigns[var] = sign;
                            self.reason[var] = Some(cr);
                            self.level[var] = if let Some(last) = self.que.back() {
                                self.level[*last]
                            } else {
                                1
                            };
                            debug_assert!(self.level[var] > 0);
                            self.que.push_back(var);
                        }
                    }
                }

                while let Some((p, cr)) = update_watchers.pop_front() {
                    self.watchers.entry(p).or_insert_with(Vec::new).push(cr);
                }
            }
            while let Some((p, cr)) = update_watchers.pop_front() {
                self.watchers.entry(p).or_insert_with(Vec::new).push(cr);
            }

            conflict
        }
        /// Analyze a conflict clause and deduce a learnt clause to avoid a current conflict
        fn analyze(&mut self, mut confl: usize) {
            let mut que_tail = self.que.len() - 1;
            let mut checked_vars = HashSet::new();
            let current_level = self.level[self.que[que_tail]];
            debug_assert!(current_level > 0);
            let mut learnt_clause = vec![];

            let mut same_level_cnt = 0;
            let mut skip = false;
            loop {
                for (i, p) in self.clauses[confl].iter().enumerate() {
                    let (var, _) = *p;
                    debug_assert!(self.level[var] > 0);
                    if skip && var == self.que[que_tail] {
                        debug_assert!(i == 0);
                        continue;
                    }

                    // already checked
                    if !checked_vars.insert(var) {
                        continue;
                    }
                    debug_assert!(self.level[var] <= current_level);
                    if self.level[var] < current_level {
                        learnt_clause.push(*p);
                    } else {
                        same_level_cnt += 1;
                    }
                }

                // Find the latest a value that is checked
                while !checked_vars.contains(&self.que[que_tail]) {
                    que_tail -= 1;
                }

                same_level_cnt -= 1;
                // There is no variables that are at the conflict level
                if same_level_cnt <= 0 {
                    break;
                }
                // Next
                skip = true;
                checked_vars.remove(&self.que[que_tail]);
                debug_assert_eq!(self.level[self.que[que_tail]], current_level);
                confl = self.reason[self.que[que_tail]].unwrap();
            }
            let p = self.que[que_tail];

            learnt_clause.push((p, !self.assigns[p]));
            let n = learnt_clause.len();
            learnt_clause.swap(0, n - 1);

            let backtrack_level = if learnt_clause.len() == 1 {
                1
            } else {
                let mut max_idx = 1;
                let mut max_level = self.level[learnt_clause[max_idx].0];

                for (i, lit) in learnt_clause.iter().enumerate().skip(2) {
                    if self.level[lit.0] > max_level {
                        max_level = self.level[lit.0];
                        max_idx = i;
                    }
                }

                learnt_clause.swap(1, max_idx);
                max_level
            };

            // Cancel decisions until the level is less than equal to the backtrack level
            while let Some(p) = self.que.back() {
                if self.level[*p] > backtrack_level {
                    self.unselected_vars.insert(*p);
                    self.level[*p] = 0;
                    self.que.pop_back();
                } else {
                    break;
                }
            }

            // propagate it by a new learnt clause
            if learnt_clause.len() == 1 {
                debug_assert_eq!(backtrack_level, 1);
                self.enqueue(learnt_clause[0].0, learnt_clause[0].1, None);
                self.head = self.que.len() - 1;
            } else {
                self.enqueue(
                    learnt_clause[0].0,
                    learnt_clause[0].1,
                    Some(self.clauses.len()),
                );
                self.head = self.que.len() - 1;
                self.add_clause_unchecked(&learnt_clause);
            }
        }
        /// Create a new `Solver` struct
        ///
        /// # Arguments
        /// * `n` - The number of variable
        /// * `clauses` - All clauses that solver solves
        pub fn new(n: usize, clauses: &[Vec<Lit>]) -> Solver {
            let mut solver = Solver {
                n,
                que: VecDeque::new(),
                head: 0,
                clauses: Vec::new(),
                reason: vec![None; n],
                level: vec![0; n],
                unselected_vars: BTreeSet::from((0..n).map(|x| x).collect()),
                assigns: vec![false; n],
                watchers: HashMap::new(),
                status: None,
            };

            for clause in clauses.iter() {
                if clause.len() == 1 {
                    solver.enqueue(clause[0].0, clause[0].1, None);
                } else {
                    solver.add_clause_unchecked(clause);
                }
            }
            solver
        }
        /// Reserve the space of a clause database
        /// # Arguments
        /// * `cla_num` - The number of clause
        pub fn reserve_clause(&mut self, cla_num: usize) {
            self.clauses.reserve(cla_num);
        }
        // Reserve the space of variables
        /// # Arguments
        /// * `var_num` - The number of variable
        pub fn reserve_variable(&mut self, var_num: usize) {
            self.que.reserve(var_num);
            self.clauses.reserve(var_num);
            self.reason.reserve(var_num);
            self.level.reserve(var_num);
            self.assigns.reserve(var_num);
        }

        /// Solve a problem and return a enum `Status`.
        /// # Arguments
        /// * `time_limit` - The time limitation for searching.
        /// Exceeding the time limit returns `Indeterminate`
        pub fn solve(&mut self, time_limit: Option<Duration>) -> Status {
            if let Some(status) = self.status.as_ref() {
                return *status;
            }
            let start = Instant::now();
            loop {
                if let Some(time_limit) = time_limit {
                    if start.elapsed() > time_limit {
                        // exceed the time limit
                        self.status = Some(Status::Indeterminate);
                        return Status::Indeterminate;
                    }
                }
                if let Some(confl) = self.propagate() {
                    //Conflict
                    let current_level = self.level[*self.que.back().unwrap()];
                    if current_level == 1 {
                        self.status = Some(Status::Unsat);
                        return Status::Unsat;
                    }
                    self.analyze(confl);
                } else {
                    // No Conflict
                    // Select a decision variable that isn't decided yet
                    let nxt_var = self.unselected_vars.iter().next();

                    if let Some(&nxt_var) = nxt_var {
                        debug_assert_eq!(self.level[nxt_var], 0);
                        self.enqueue(nxt_var, self.assigns[nxt_var], None);
                        self.level[nxt_var] += 1;
                    } else {
                        // all variables are selected. which means that a formula is satisfied
                        self.status = Some(Status::Sat);
                        return Status::Sat;
                    }
                }
            }
        }
    }
}

// This mod contains utility functions
pub mod util {
    use super::solver::{Lit, Var};
    use std::io::BufRead;

    // CnfData is parsed form a input file
    #[derive(Debug)]
    pub struct CnfData {
        // the number of variable
        pub var_num: Option<usize>,
        // the number of clause
        pub cla_num: Option<usize>,
        // all problem clauses
        pub clauses: Vec<Vec<Lit>>,
    }
    /// Parse a DIMACAS cnf file
    /// # Arguments
    /// * `input_file` - A path of an input file name
    /// c Here is a comment.
    /// c SATISFIABLE
    /// p cnf 5 3
    /// 1 -5 4 0
    /// -1 5 3 4 0
    /// -3 -4 0
    pub fn parse_cnf(input_file: &str) -> std::io::Result<CnfData> {
        let file = std::fs::File::open(input_file)?;
        let reader = std::io::BufReader::new(file);
        let mut var_num = None;
        let mut cla_num = None;
        let mut clauses = vec![];
        for line in reader.lines() {
            let line = line?;
            let line = line.trim();

            if line.starts_with('c') {
                //comment
                continue;
            }
            let values: Vec<&str> = line.split_whitespace().collect();
            if values.is_empty() {
                continue;
            }
            if values[0] == "p" {
                //p cnf v_num c_num
                if let Some(v) = values.get(2) {
                    var_num = Some(v.parse::<usize>().unwrap());
                };
                if let Some(v) = values.get(3) {
                    cla_num = Some(v.parse::<usize>().unwrap());
                }
                continue;
            }

            let values: Vec<_> = values
                .into_iter()
                .filter_map(|x| x.parse::<i32>().ok())
                .take_while(|x| *x != 0)
                .collect();

            if values.is_empty() {
                // skip an empty line
                continue;
            }
            let clause: Vec<Lit> = values
                .iter()
                .map(|&x| {
                    let d = x.abs() as Var;
                    if x > 0 {
                        (d - 1, true)
                    } else {
                        (d - 1, false)
                    }
                })
                .collect();
            clauses.push(clause);
        }
        Ok(CnfData {
            var_num,
            cla_num,
            clauses,
        })
    }
}