1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
pub mod screwsat {
    use std::{
        collections::{HashMap, HashSet, VecDeque},
        time::{Duration, Instant},
        vec,
    };

    pub type Var = usize;
    pub type Lit = (Var, bool); //(0, true) means x0 and (0, false) means not x0.
    #[derive(PartialEq)]
    pub enum Status {
        Sat,
        Unsat,
        Indeterminate,
    }

    #[derive(Debug, Default)]
    pub struct Solver {
        n: usize,                           // the number of variables
        pub assigns: Vec<bool>,             // assignments for each varialbes
        clauses: Vec<Vec<Lit>>,             // all clauses(original + learnt)
        watchers: HashMap<Lit, Vec<usize>>, // clauses that may be conflicted or propagated if a `lit` is false.
        reason: Vec<Option<usize>>, // a clause index represents that a variable is forced to be assigned.
        level: Vec<usize>,          // decision level(0: unassigned, 1: minimum level)
        que: VecDeque<Var>,         // assigned variables
        head: usize,                // the head of que's unchecked front
    }

    impl Solver {
        /// Enqueue a variable to assign a `value` to a boolean `assign`
        pub fn enqueue(&mut self, var: Var, assign: bool, reason: Option<usize>) {
            self.assigns[var] = assign;
            self.reason[var] = reason;
            self.level[var] = if let Some(last) = self.que.back() {
                self.level[*last]
            } else {
                1
            };
            self.que.push_back(var);
        }
        pub fn new_var(&mut self) {
            self.n += 1;
            self.assigns.push(false);
            self.reason.push(None);
            self.level.push(0);
        }

        /// This method is only for internal usage and almost same as `add_clause`
        /// But, this method doesn't grow the size of array.
        fn add_clause_unchecked(&mut self, clause: &[Lit]) {
            assert!(clause.len() >= 2);
            let clause_idx = self.clauses.len();
            for &c in clause.iter() {
                self.watchers.entry(c).or_insert(vec![]).push(clause_idx);
            }
            self.clauses.push(clause.to_vec());
        }

        /// Add a new clause to `clauses` and watch a clause.
        /// If a variable is greater than the size of array, grow it.
        pub fn add_clause(&mut self, clause: &[Lit]) {
            if clause.len() == 1 {
                self.enqueue(clause[0].0, clause[0].1, None);
                return;
            }
            let clause_idx = self.clauses.len();
            for &c in clause.iter() {
                while c.0 >= self.assigns.len() {
                    self.new_var();
                }
                self.watchers.entry(c).or_insert(vec![]).push(clause_idx);
            }
            self.clauses.push(clause.to_vec());
        }

        /// Propagate it by all enqueued values and check conflicts.
        /// If a conflict is detected, this function returns a conflicted clause index.
        /// `None` is no conflicts.
        fn propagate(&mut self) -> Option<usize> {
            while self.head < self.que.len() {
                let p = {
                    let v = self.que[self.head];
                    self.head += 1;
                    (v, !self.assigns[v])
                };

                if let Some(watcher) = self.watchers.get(&p) {
                    'next_clause: for &cr in watcher.iter() {
                        let mut cnt = 0;
                        //let clause = &mut self.clauses[*cr];
                        let len = self.clauses[cr].len();

                        for c in 0..len {
                            let (v, sign) = self.clauses[cr][c];
                            if self.level[v] == 0 {
                                // this variable hasn't been decided yet
                                self.clauses[cr].swap(c, 0);
                                cnt += 1;
                            } else if self.assigns[v] == sign {
                                // this clause is already satisfied
                                self.clauses[cr].swap(c, 0);
                                continue 'next_clause;
                            }
                        }
                        if cnt == 0 {
                            return Some(cr);
                        } else if cnt == 1 {
                            // Unit clause
                            let (var, sign) = self.clauses[cr][0];
                            debug_assert!(self.level[var] == 0);
                            // NOTE
                            // I don't know how to handle this borrowing problem. Please help me.
                            // self.enqueue(var, sign, Some(cr));

                            self.assigns[var] = sign;
                            self.reason[var] = Some(cr);
                            self.level[var] = if let Some(last) = self.que.back() {
                                self.level[*last]
                            } else {
                                1
                            };
                            self.que.push_back(var);
                        }
                    }
                }
            }
            None
        }
        /// Analyze a conflict clause and deduce a learnt clause to avoid a current conflict
        fn analyze(&mut self, mut confl: usize) {
            let mut que_tail = self.que.len() - 1;
            let mut checked_vars = HashSet::new();
            let current_level = self.level[self.que[que_tail]];

            let mut learnt_clause = vec![];
            let mut backtrack_level = 1;
            let mut same_level_cnt = 0;
            let mut skip = false;
            loop {
                for p in self.clauses[confl].iter() {
                    let (var, _) = *p;
                    if skip && var == self.que[que_tail] {
                        continue;
                    }
                    if self.level[var] == 0 {
                        continue;
                    }
                    // already checked
                    if !checked_vars.insert(var) {
                        continue;
                    }
                    debug_assert!(self.level[var] <= current_level);
                    if self.level[var] < current_level {
                        learnt_clause.push(*p);
                        backtrack_level = std::cmp::max(backtrack_level, self.level[var]);
                    } else {
                        same_level_cnt += 1;
                    }
                }

                // Find the latest a value that is checked
                while !checked_vars.contains(&self.que[que_tail]) {
                    que_tail -= 1;
                }

                same_level_cnt -= 1;
                // There is no variables that are at the conflict level
                if same_level_cnt <= 0 {
                    break;
                }
                // Next
                skip = true;
                checked_vars.remove(&self.que[que_tail]);
                debug_assert_eq!(self.level[self.que[que_tail]], current_level);
                confl = self.reason[self.que[que_tail]].unwrap();
            }
            let p = self.que[que_tail];
            learnt_clause.push((p, !self.assigns[p]));
            if learnt_clause.len() == 1 {
                backtrack_level = 1;
            }

            // Cancel decisions until the level is less than equal to the backtrack level
            while let Some(p) = self.que.back() {
                if self.level[*p] > backtrack_level {
                    self.level[*p] = 0;
                    self.que.pop_back();
                } else {
                    break;
                }
            }
            // propagate it by a new learnt clause
            if learnt_clause.len() == 1 {
                self.enqueue(p, !self.assigns[p], None);
                self.head = self.que.len() - 1;
            } else {
                self.enqueue(p, !self.assigns[p], Some(self.clauses.len()));
                self.head = self.que.len() - 1;
                self.add_clause_unchecked(&learnt_clause);
            }
        }

        pub fn new(n: usize, clauses: &[Vec<Lit>]) -> Solver {
            let mut solver = Solver {
                n,
                que: VecDeque::new(),
                head: 0,
                clauses: Vec::new(),
                reason: vec![None; n],
                level: vec![0; n],
                assigns: vec![false; n],
                watchers: HashMap::new(),
            };
            for clause in clauses.iter() {
                if clause.len() == 1 {
                    solver.enqueue(clause[0].0, clause[0].1, None);
                } else {
                    solver.add_clause_unchecked(clause);
                }
            }
            solver
        }

        pub fn reserve_clause(&mut self, cla_num: usize) {
            self.clauses.reserve(cla_num);
        }
        pub fn reserve_variable(&mut self, var_num: usize) {
            self.que.reserve(var_num);
            self.clauses.reserve(var_num);
            self.reason.reserve(var_num);
            self.level.reserve(var_num);
            self.assigns.reserve(var_num);
        }
        /// Solve a problem and return
        /// `true` if solver finds a SATISFIABLE assignments
        /// `false` if solver finds a given problem is UNSATISFIABLE or reach the time limit
        pub fn solve(&mut self, msec: Option<u64>) -> Status {
            let start = Instant::now();
            loop {
                if let Some(msec) = msec {
                    // reach the time limit
                    if start.elapsed() > Duration::from_millis(msec) {
                        return Status::Indeterminate;
                    }
                }
                if let Some(confl) = self.propagate() {
                    //Conflict
                    let current_level = self.level[*self.que.back().unwrap()];
                    if current_level == 1 {
                        return Status::Unsat;
                    }
                    self.analyze(confl);
                } else {
                    // No Conflict
                    // Select a decision variable that isn't decided yet
                    let mut p = None;
                    for v in 0..self.n {
                        if self.level[v] == 0 {
                            p = Some(v);
                            break;
                        }
                    }
                    if let Some(p) = p {
                        self.enqueue(p, self.assigns[p], None);
                        self.level[p] += 1;
                    } else {
                        // all variables are selected. which means that a formula is satisfied
                        return Status::Sat;
                    }
                }
            }
        }
    }
}