scirs2_stats/
topological_advanced.rs

1//! Advanced-advanced topological data analysis for statistical shape understanding
2//!
3//! This module implements state-of-the-art topological data analysis techniques including:
4//! - Persistent homology and persistence diagrams
5//! - Mapper algorithm for topological visualization
6//! - Topological features for machine learning
7//! - Multiscale topological analysis
8//! - Topological clustering and classification
9//! - Persistent entropy and statistical inference
10//! - Sheaf cohomology for distributed data analysis
11//! - Topological time series analysis
12
13use crate::error::{StatsError, StatsResult};
14use scirs2_core::ndarray::{Array1, Array2, Array3, ArrayView1, ArrayView2};
15use scirs2_core::numeric::{Float, NumCast, One, Zero};
16use scirs2_core::{simd_ops::SimdUnifiedOps, validation::*};
17use scirs2_linalg::parallel_dispatch::ParallelConfig;
18use std::collections::HashMap;
19use std::marker::PhantomData;
20
21/// Advanced-advanced topological data analyzer
22pub struct AdvancedTopologicalAnalyzer<F> {
23    /// Analysis configuration
24    config: TopologicalConfig<F>,
25    /// Cached simplicial complexes
26    cache: TopologicalCache<F>,
27    /// Performance metrics
28    performance: TopologicalPerformanceMetrics,
29    _phantom: PhantomData<F>,
30}
31
32/// Configuration for topological data analysis
33pub struct TopologicalConfig<F> {
34    /// Maximum homology dimension to compute
35    pub max_dimension: usize,
36    /// Filtration parameters
37    pub filtration_config: FiltrationConfig<F>,
38    /// Persistent homology settings
39    pub persistence_config: PersistenceConfig<F>,
40    /// Mapper algorithm settings
41    pub mapper_config: MapperConfig<F>,
42    /// Multi-scale analysis settings
43    pub multiscale_config: MultiscaleConfig<F>,
44    /// Statistical inference settings
45    pub inference_config: TopologicalInferenceConfig<F>,
46    /// Parallel processing configuration
47    pub parallel_config: ParallelConfig,
48}
49
50impl<F> std::fmt::Debug for TopologicalConfig<F>
51where
52    F: std::fmt::Debug,
53{
54    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
55        f.debug_struct("TopologicalConfig")
56            .field("max_dimension", &self.max_dimension)
57            .field("filtration_config", &self.filtration_config)
58            .field("persistence_config", &self.persistence_config)
59            .field("mapper_config", &self.mapper_config)
60            .field("multiscale_config", &self.multiscale_config)
61            .field("inference_config", &self.inference_config)
62            .field("parallel_config", &"<ParallelConfig>")
63            .finish()
64    }
65}
66
67impl<F> Clone for TopologicalConfig<F>
68where
69    F: Clone,
70{
71    fn clone(&self) -> Self {
72        Self {
73            max_dimension: self.max_dimension,
74            filtration_config: self.filtration_config.clone(),
75            persistence_config: self.persistence_config.clone(),
76            mapper_config: self.mapper_config.clone(),
77            multiscale_config: self.multiscale_config.clone(),
78            inference_config: self.inference_config.clone(),
79            parallel_config: ParallelConfig::default(), // Default since we can't clone
80        }
81    }
82}
83
84/// Filtration configuration for building simplicial complexes
85#[derive(Debug, Clone)]
86pub struct FiltrationConfig<F> {
87    /// Filtration type
88    pub filtration_type: FiltrationType,
89    /// Distance metric for point cloud data
90    pub distance_metric: DistanceMetric,
91    /// Maximum filtration parameter
92    pub max_epsilon: F,
93    /// Number of filtration steps
94    pub num_steps: usize,
95    /// Adaptive step sizing
96    pub adaptive_steps: bool,
97}
98
99/// Persistent homology computation configuration
100#[derive(Debug, Clone)]
101pub struct PersistenceConfig<F> {
102    /// Algorithm for computing persistence
103    pub algorithm: PersistenceAlgorithm,
104    /// Coefficient field (typically Z/2Z or Z/pZ)
105    pub coefficient_field: CoeffientField,
106    /// Persistence threshold
107    pub persistence_threshold: F,
108    /// Enable persistent entropy computation
109    pub compute_entropy: bool,
110    /// Enable stability analysis
111    pub stability_analysis: bool,
112}
113
114/// Mapper algorithm configuration
115#[derive(Debug, Clone)]
116pub struct MapperConfig<F> {
117    /// Filter functions for Mapper
118    pub filter_functions: Vec<FilterFunction>,
119    /// Cover configuration
120    pub cover_config: CoverConfig<F>,
121    /// Clustering method for each cover element
122    pub clustering_method: ClusteringMethod,
123    /// Overlap threshold for cover elements
124    pub overlap_threshold: F,
125    /// Simplification parameters
126    pub simplification: SimplificationConfig,
127}
128
129/// Multi-scale topological analysis configuration
130#[derive(Debug, Clone)]
131pub struct MultiscaleConfig<F> {
132    /// Scale range
133    pub scale_range: (F, F),
134    /// Number of scales
135    pub num_scales: usize,
136    /// Scale distribution (linear, logarithmic, adaptive)
137    pub scale_distribution: ScaleDistribution,
138    /// Multi-scale merger strategy
139    pub merger_strategy: MergerStrategy,
140}
141
142/// Topological statistical inference configuration
143#[derive(Debug, Clone)]
144pub struct TopologicalInferenceConfig<F> {
145    /// Bootstrap samples for confidence intervals
146    pub bootstrap_samples: usize,
147    /// Confidence level
148    pub confidence_level: F,
149    /// Null hypothesis model
150    pub null_model: NullModel,
151    /// Statistical test type
152    pub test_type: TopologicalTest,
153    /// Multiple comparisons correction
154    pub multiple_comparisons: MultipleComparisonsCorrection,
155}
156
157/// Filtration types for building complexes
158#[derive(Debug, Clone, Copy)]
159pub enum FiltrationType {
160    /// Vietoris-Rips complex
161    VietorisRips,
162    /// Alpha complex
163    Alpha,
164    /// Cech complex
165    Cech,
166    /// Witness complex
167    Witness,
168    /// Lazy witness complex
169    LazyWitness,
170    /// Delaunay complex
171    Delaunay,
172    /// Sublevel set filtration
173    SublevelSet,
174    /// Superlevel set filtration
175    SuperlevelSet,
176}
177
178/// Distance metrics for point cloud analysis
179#[derive(Debug, Clone, Copy)]
180pub enum DistanceMetric {
181    Euclidean,
182    Manhattan,
183    Chebyshev,
184    Minkowski(f64),
185    Cosine,
186    Correlation,
187    Hamming,
188    Jaccard,
189    Mahalanobis,
190    Custom,
191}
192
193/// Algorithms for persistent homology computation
194#[derive(Debug, Clone, Copy)]
195pub enum PersistenceAlgorithm {
196    /// Standard reduction algorithm
197    StandardReduction,
198    /// Twist reduction algorithm
199    TwistReduction,
200    /// Row reduction algorithm
201    RowReduction,
202    /// Spectral sequence method
203    SpectralSequence,
204    /// Zig-zag persistence
205    ZigZag,
206    /// Multi-parameter persistence
207    MultiParameter,
208}
209
210/// Coefficient fields for homology computation
211#[derive(Debug, Clone, Copy)]
212pub enum CoeffientField {
213    /// Binary field Z/2Z
214    Z2,
215    /// Prime field Z/pZ
216    ZModP(u32),
217    /// Rational field Q
218    Rational,
219    /// Real field R
220    Real,
221}
222
223/// Filter functions for Mapper algorithm
224#[derive(Debug, Clone)]
225pub enum FilterFunction {
226    /// Coordinate projection
227    Coordinate { axis: usize },
228    /// Principal component
229    PrincipalComponent { component: usize },
230    /// Distance to point
231    DistanceToPoint { point: Array1<f64> },
232    /// Density estimate
233    Density { bandwidth: f64 },
234    /// Centrality measure
235    Centrality { method: CentralityMethod },
236    /// Custom function
237    Custom { name: String },
238}
239
240/// Cover configuration for Mapper
241#[derive(Debug, Clone)]
242pub struct CoverConfig<F> {
243    /// Number of intervals in each dimension
244    pub num_intervals: Vec<usize>,
245    /// Overlap percentage between adjacent intervals
246    pub overlap_percent: F,
247    /// Cover type
248    pub cover_type: CoverType,
249}
250
251/// Cover types for Mapper algorithm
252#[derive(Debug, Clone, Copy)]
253pub enum CoverType {
254    /// Uniform interval cover
255    UniformInterval,
256    /// Balanced interval cover
257    BalancedInterval,
258    /// Voronoi cover
259    Voronoi,
260    /// Adaptive cover
261    Adaptive,
262}
263
264/// Clustering methods for Mapper
265#[derive(Debug, Clone, Copy)]
266pub enum ClusteringMethod {
267    SingleLinkage,
268    CompleteLinkage,
269    AverageLinkage,
270    KMeans,
271    DBSCAN,
272    SpectralClustering,
273}
274
275/// Centrality measures for filter functions
276#[derive(Debug, Clone, Copy)]
277pub enum CentralityMethod {
278    Degree,
279    Betweenness,
280    Closeness,
281    Eigenvector,
282    PageRank,
283    Katz,
284}
285
286/// Simplification configuration
287#[derive(Debug, Clone)]
288pub struct SimplificationConfig {
289    /// Enable edge contraction
290    pub edge_contraction: bool,
291    /// Enable vertex removal
292    pub vertex_removal: bool,
293    /// Simplification threshold
294    pub threshold: f64,
295}
296
297/// Scale distribution types
298#[derive(Debug, Clone, Copy)]
299pub enum ScaleDistribution {
300    Linear,
301    Logarithmic,
302    Exponential,
303    Adaptive,
304}
305
306/// Multi-scale merger strategies
307#[derive(Debug, Clone, Copy)]
308pub enum MergerStrategy {
309    Union,
310    Intersection,
311    WeightedCombination,
312    ConsensusFiltering,
313}
314
315/// Null models for statistical testing
316#[derive(Debug, Clone, Copy)]
317pub enum NullModel {
318    /// Erdős–Rényi random graph
319    ErdosRenyi,
320    /// Configuration model
321    Configuration,
322    /// Gaussian random field
323    GaussianRandomField,
324    /// Uniform random points
325    UniformRandom,
326    /// Poisson point process
327    PoissonProcess,
328}
329
330/// Topological statistical tests
331#[derive(Debug, Clone, Copy)]
332pub enum TopologicalTest {
333    /// Persistent homology rank test
334    PersistentRankTest,
335    /// Bottleneck distance test
336    BottleneckDistanceTest,
337    /// Wasserstein distance test
338    WassersteinDistanceTest,
339    /// Persistence landscape test
340    PersistenceLandscapeTest,
341    /// Persistence silhouette test
342    PersistenceSilhouetteTest,
343}
344
345/// Multiple comparisons correction methods
346#[derive(Debug, Clone, Copy)]
347pub enum MultipleComparisonsCorrection {
348    None,
349    Bonferroni,
350    BenjaminiHochberg,
351    BenjaminiYekutieli,
352    Holm,
353    Hochberg,
354}
355
356/// Topological analysis results
357#[derive(Debug, Clone)]
358pub struct TopologicalResults<F> {
359    /// Persistence diagrams by dimension
360    pub persistence_diagrams: HashMap<usize, PersistenceDiagram<F>>,
361    /// Betti numbers by filtration parameter
362    pub betti_numbers: Array2<usize>,
363    /// Persistent entropy
364    pub persistent_entropy: Option<Array1<F>>,
365    /// Mapper graph structure
366    pub mapper_graph: Option<MapperGraph<F>>,
367    /// Multi-scale analysis results
368    pub multiscale_results: Option<MultiscaleResults<F>>,
369    /// Statistical inference results
370    pub inference_results: Option<TopologicalInferenceResults<F>>,
371    /// Performance metrics
372    pub performance: TopologicalPerformanceMetrics,
373}
374
375/// Persistence diagram representation
376#[derive(Debug, Clone)]
377pub struct PersistenceDiagram<F> {
378    /// Birth-death pairs
379    pub points: Array2<F>, // [birth, death] pairs
380    /// Multiplicities
381    pub multiplicities: Array1<usize>,
382    /// Representative cycles (if computed)
383    pub representatives: Option<Vec<SimplicialChain>>,
384}
385
386/// Mapper graph structure
387#[derive(Debug, Clone)]
388pub struct MapperGraph<F> {
389    /// Nodes (clusters) with their properties
390    pub nodes: HashMap<usize, MapperNode<F>>,
391    /// Edges between overlapping clusters
392    pub edges: HashMap<(usize, usize), MapperEdge<F>>,
393    /// Node positions for visualization
394    pub node_positions: Option<Array2<F>>,
395    /// Graph statistics
396    pub statistics: GraphStatistics<F>,
397}
398
399/// Mapper node representation
400#[derive(Debug, Clone)]
401pub struct MapperNode<F> {
402    /// Data points in this node
403    pub point_indices: Vec<usize>,
404    /// Node size
405    pub size: usize,
406    /// Centroid position
407    pub centroid: Array1<F>,
408    /// Average filter function value
409    pub average_filter_value: F,
410    /// Node diameter
411    pub diameter: F,
412}
413
414/// Mapper edge representation
415#[derive(Debug, Clone)]
416pub struct MapperEdge<F> {
417    /// Number of shared points
418    pub shared_points: usize,
419    /// Edge weight
420    pub weight: F,
421    /// Shared point indices
422    pub shared_indices: Vec<usize>,
423}
424
425/// Graph statistics for Mapper
426#[derive(Debug, Clone)]
427pub struct GraphStatistics<F> {
428    /// Number of nodes
429    pub num_nodes: usize,
430    /// Number of edges
431    pub num_edges: usize,
432    /// Connected components
433    pub num_components: usize,
434    /// Average node size
435    pub average_nodesize: F,
436    /// Graph diameter
437    pub graph_diameter: usize,
438    /// Average path length
439    pub average_path_length: F,
440    /// Clustering coefficient
441    pub clustering_coefficient: F,
442}
443
444/// Multi-scale analysis results
445#[derive(Debug, Clone)]
446pub struct MultiscaleResults<F> {
447    /// Persistence diagrams at each scale
448    pub scale_diagrams: Vec<HashMap<usize, PersistenceDiagram<F>>>,
449    /// Scale parameters
450    pub scales: Array1<F>,
451    /// Multi-scale summary statistics
452    pub summary_statistics: MultiscaleSummary<F>,
453    /// Scale-space visualization data
454    pub scale_space: Option<Array3<F>>,
455}
456
457/// Multi-scale summary statistics
458#[derive(Debug, Clone)]
459pub struct MultiscaleSummary<F> {
460    /// Persistent entropy across scales
461    pub entropy_curve: Array1<F>,
462    /// Total persistence across scales
463    pub total_persistence: Array1<F>,
464    /// Number of features across scales
465    pub feature_count: Array1<usize>,
466    /// Stability measures
467    pub stability_measures: Array1<F>,
468}
469
470/// Topological statistical inference results
471#[derive(Debug, Clone)]
472pub struct TopologicalInferenceResults<F> {
473    /// Test statistics
474    pub test_statistics: HashMap<String, F>,
475    /// P-values
476    pub p_values: HashMap<String, F>,
477    /// Confidence intervals
478    pub confidence_intervals: HashMap<String, (F, F)>,
479    /// Bootstrap distributions
480    pub bootstrap_distributions: Option<HashMap<String, Array1<F>>>,
481    /// Critical values
482    pub critical_values: HashMap<String, F>,
483}
484
485/// Simplicial chain representation
486#[derive(Debug, Clone)]
487pub struct SimplicialChain {
488    /// Simplices in the chain
489    pub simplices: Vec<Simplex>,
490    /// Coefficients
491    pub coefficients: Vec<i32>,
492}
493
494/// Simplex representation
495#[derive(Debug, Clone, PartialEq, Eq, Hash)]
496pub struct Simplex {
497    /// Vertex indices
498    pub vertices: Vec<usize>,
499    /// Dimension
500    pub dimension: usize,
501}
502
503/// Topological cache for performance optimization
504struct TopologicalCache<F> {
505    /// Cached distance matrices
506    distance_matrices: HashMap<String, Array2<F>>,
507    /// Cached simplicial complexes
508    simplicial_complexes: HashMap<String, SimplicialComplex>,
509    /// Cached filtrations
510    filtrations: HashMap<String, Filtration<F>>,
511}
512
513/// Simplicial complex representation
514#[derive(Debug, Clone)]
515pub struct SimplicialComplex {
516    /// Simplices by dimension
517    pub simplices_by_dim: Vec<Vec<Simplex>>,
518    /// Maximum dimension
519    pub max_dimension: usize,
520}
521
522/// Filtration representation
523#[derive(Debug, Clone)]
524pub struct Filtration<F> {
525    /// Filtration values for each simplex
526    pub values: HashMap<Simplex, F>,
527    /// Ordered list of simplices
528    pub ordered_simplices: Vec<Simplex>,
529}
530
531/// Performance metrics for topological analysis
532#[derive(Debug, Clone)]
533pub struct TopologicalPerformanceMetrics {
534    /// Computation time breakdown
535    pub timing: HashMap<String, f64>,
536    /// Memory usage statistics  
537    pub memory_usage: MemoryUsageStats,
538    /// Algorithm convergence metrics
539    pub convergence: ConvergenceMetrics,
540    /// Numerical stability measures
541    pub stability: StabilityMetrics,
542}
543
544/// Memory usage statistics
545#[derive(Debug, Clone)]
546pub struct MemoryUsageStats {
547    /// Peak memory usage
548    pub peak_usage: usize,
549    /// Average memory usage
550    pub average_usage: usize,
551    /// Complex size statistics
552    pub complexsizes: HashMap<String, usize>,
553}
554
555/// Convergence metrics
556#[derive(Debug, Clone)]
557pub struct ConvergenceMetrics {
558    /// Number of iterations
559    pub iterations: usize,
560    /// Final residual
561    pub final_residual: f64,
562    /// Convergence rate
563    pub convergence_rate: f64,
564}
565
566/// Stability metrics
567#[derive(Debug, Clone)]
568pub struct StabilityMetrics {
569    /// Numerical stability score
570    pub stability_score: f64,
571    /// Condition numbers
572    pub condition_numbers: HashMap<String, f64>,
573    /// Error bounds
574    pub error_bounds: HashMap<String, f64>,
575}
576
577impl<F> AdvancedTopologicalAnalyzer<F>
578where
579    F: Float
580        + NumCast
581        + SimdUnifiedOps
582        + One
583        + Zero
584        + PartialOrd
585        + Copy
586        + Send
587        + Sync
588        + std::fmt::Display,
589{
590    /// Create new topological data analyzer
591    pub fn new(config: TopologicalConfig<F>) -> Self {
592        let cache = TopologicalCache {
593            distance_matrices: HashMap::new(),
594            simplicial_complexes: HashMap::new(),
595            filtrations: HashMap::new(),
596        };
597
598        let performance = TopologicalPerformanceMetrics {
599            timing: HashMap::new(),
600            memory_usage: MemoryUsageStats {
601                peak_usage: 0,
602                average_usage: 0,
603                complexsizes: HashMap::new(),
604            },
605            convergence: ConvergenceMetrics {
606                iterations: 0,
607                final_residual: 0.0,
608                convergence_rate: 0.0,
609            },
610            stability: StabilityMetrics {
611                stability_score: 1.0,
612                condition_numbers: HashMap::new(),
613                error_bounds: HashMap::new(),
614            },
615        };
616
617        Self {
618            config,
619            cache,
620            performance: TopologicalPerformanceMetrics {
621                timing: HashMap::new(),
622                memory_usage: MemoryUsageStats {
623                    peak_usage: 0,
624                    average_usage: 0,
625                    complexsizes: HashMap::new(),
626                },
627                convergence: ConvergenceMetrics {
628                    iterations: 0,
629                    final_residual: 0.0,
630                    convergence_rate: 1.0,
631                },
632                stability: StabilityMetrics {
633                    stability_score: 1.0,
634                    condition_numbers: HashMap::new(),
635                    error_bounds: HashMap::new(),
636                },
637            },
638            _phantom: PhantomData,
639        }
640    }
641
642    /// Comprehensive topological analysis of point cloud data
643    pub fn analyze_point_cloud(
644        &mut self,
645        points: &ArrayView2<F>,
646    ) -> StatsResult<TopologicalResults<F>> {
647        checkarray_finite(points, "points")?;
648        let (n_points, dimension) = points.dim();
649
650        if n_points < 2 {
651            return Err(StatsError::InvalidArgument(
652                "Need at least 2 points for topological analysis".to_string(),
653            ));
654        }
655
656        let start_time = std::time::Instant::now();
657
658        // Build simplicial complex
659        let complex = self.build_simplicial_complex(points)?;
660
661        // Compute persistence diagrams
662        let persistence_diagrams = self.compute_persistent_homology(&complex)?;
663
664        // Compute Betti numbers
665        let betti_numbers = self.compute_betti_numbers(&complex)?;
666
667        // Compute persistent entropy if enabled
668        let persistent_entropy = if self.config.persistence_config.compute_entropy {
669            Some(self.compute_persistent_entropy(&persistence_diagrams)?)
670        } else {
671            None
672        };
673
674        // Mapper analysis if configured
675        let mapper_graph = if !self.config.mapper_config.filter_functions.is_empty() {
676            Some(self.compute_mapper(points)?)
677        } else {
678            None
679        };
680
681        // Multi-scale analysis if configured
682        let multiscale_results = if self.config.multiscale_config.num_scales > 1 {
683            Some(self.multiscale_analysis(points)?)
684        } else {
685            None
686        };
687
688        // Statistical inference if configured
689        let inference_results = if self.config.inference_config.bootstrap_samples > 0 {
690            Some(self.topological_inference(points, &persistence_diagrams)?)
691        } else {
692            None
693        };
694
695        // Update performance metrics
696        let elapsed = start_time.elapsed();
697        self.performance
698            .timing
699            .insert("total_analysis".to_string(), elapsed.as_secs_f64());
700
701        Ok(TopologicalResults {
702            persistence_diagrams,
703            betti_numbers,
704            persistent_entropy,
705            mapper_graph,
706            multiscale_results,
707            inference_results,
708            performance: self.performance.clone(),
709        })
710    }
711
712    /// Build simplicial complex from point cloud
713    fn build_simplicial_complex(
714        &mut self,
715        points: &ArrayView2<F>,
716    ) -> StatsResult<SimplicialComplex> {
717        let _n_points_ = points.dim();
718
719        // Compute distance matrix
720        let distance_matrix = self.compute_distance_matrix(points)?;
721
722        // Build filtration based on configuration
723        match self.config.filtration_config.filtration_type {
724            FiltrationType::VietorisRips => self.build_vietoris_rips_complex(&distance_matrix),
725            FiltrationType::Alpha => self.build_alpha_complex(points),
726            FiltrationType::Cech => self.build_cech_complex(points),
727            _ => {
728                // Default to Vietoris-Rips
729                self.build_vietoris_rips_complex(&distance_matrix)
730            }
731        }
732    }
733
734    /// Compute distance matrix between points
735    fn compute_distance_matrix(&self, points: &ArrayView2<F>) -> StatsResult<Array2<F>> {
736        let (n_points, _) = points.dim();
737        let mut distance_matrix = Array2::zeros((n_points, n_points));
738
739        for i in 0..n_points {
740            for j in i..n_points {
741                let dist = self.compute_distance(
742                    &points.row(i),
743                    &points.row(j),
744                    self.config.filtration_config.distance_metric,
745                )?;
746                distance_matrix[[i, j]] = dist;
747                distance_matrix[[j, i]] = dist;
748            }
749        }
750
751        Ok(distance_matrix)
752    }
753
754    /// Compute distance between two points
755    fn compute_distance(
756        &self,
757        point1: &ArrayView1<F>,
758        point2: &ArrayView1<F>,
759        metric: DistanceMetric,
760    ) -> StatsResult<F> {
761        if point1.len() != point2.len() {
762            return Err(StatsError::DimensionMismatch(
763                "Points must have same dimension".to_string(),
764            ));
765        }
766
767        match metric {
768            DistanceMetric::Euclidean => {
769                let mut sum = F::zero();
770                for (x1, x2) in point1.iter().zip(point2.iter()) {
771                    let diff = *x1 - *x2;
772                    sum = sum + diff * diff;
773                }
774                Ok(sum.sqrt())
775            }
776            DistanceMetric::Manhattan => {
777                let mut sum = F::zero();
778                for (x1, x2) in point1.iter().zip(point2.iter()) {
779                    sum = sum + (*x1 - *x2).abs();
780                }
781                Ok(sum)
782            }
783            DistanceMetric::Chebyshev => {
784                let mut max_diff = F::zero();
785                for (x1, x2) in point1.iter().zip(point2.iter()) {
786                    let diff = (*x1 - *x2).abs();
787                    if diff > max_diff {
788                        max_diff = diff;
789                    }
790                }
791                Ok(max_diff)
792            }
793            DistanceMetric::Cosine => {
794                let dot_product = F::simd_dot(point1, point2);
795                let norm1 = F::simd_norm(point1);
796                let norm2 = F::simd_norm(point2);
797
798                if norm1 == F::zero() || norm2 == F::zero() {
799                    Ok(F::zero())
800                } else {
801                    let cosine_sim = dot_product / (norm1 * norm2);
802                    Ok(F::one() - cosine_sim)
803                }
804            }
805            _ => {
806                // Default to Euclidean
807                let mut sum = F::zero();
808                for (x1, x2) in point1.iter().zip(point2.iter()) {
809                    let diff = *x1 - *x2;
810                    sum = sum + diff * diff;
811                }
812                Ok(sum.sqrt())
813            }
814        }
815    }
816
817    /// Build Vietoris-Rips complex
818    fn build_vietoris_rips_complex(
819        &self,
820        distance_matrix: &Array2<F>,
821    ) -> StatsResult<SimplicialComplex> {
822        let n_points = distance_matrix.nrows();
823        let max_dim = self.config.max_dimension.min(n_points - 1);
824        let max_epsilon = self.config.filtration_config.max_epsilon;
825
826        let mut simplices_by_dim = vec![Vec::new(); max_dim + 1];
827
828        // Add vertices (0-simplices)
829        for i in 0..n_points {
830            simplices_by_dim[0].push(Simplex {
831                vertices: vec![i],
832                dimension: 0,
833            });
834        }
835
836        // Add edges (1-simplices)
837        for i in 0..n_points {
838            for j in i + 1..n_points {
839                if distance_matrix[[i, j]] <= max_epsilon {
840                    simplices_by_dim[1].push(Simplex {
841                        vertices: vec![i, j],
842                        dimension: 1,
843                    });
844                }
845            }
846        }
847
848        // Add higher-dimensional simplices
849        for dim in 2..=max_dim {
850            simplices_by_dim[dim] = self.generate_higher_simplices(
851                &simplices_by_dim[dim - 1],
852                distance_matrix,
853                max_epsilon,
854                dim,
855            )?;
856        }
857
858        Ok(SimplicialComplex {
859            simplices_by_dim,
860            max_dimension: max_dim,
861        })
862    }
863
864    /// Generate higher-dimensional simplices
865    fn generate_higher_simplices(
866        &self,
867        lower_simplices: &[Simplex],
868        distance_matrix: &Array2<F>,
869        max_epsilon: F,
870        target_dim: usize,
871    ) -> StatsResult<Vec<Simplex>> {
872        let mut higher_simplices = Vec::new();
873
874        // Generate _simplices by adding vertices to existing _simplices
875        for simplex in lower_simplices {
876            let n_points = distance_matrix.nrows();
877            for vertex in 0..n_points {
878                if !simplex.vertices.contains(&vertex) {
879                    // Check if adding this vertex forms a valid simplex
880                    let mut is_valid = true;
881                    for &existing_vertex in &simplex.vertices {
882                        if distance_matrix[[vertex, existing_vertex]] > max_epsilon {
883                            is_valid = false;
884                            break;
885                        }
886                    }
887
888                    if is_valid {
889                        let mut new_vertices = simplex.vertices.clone();
890                        new_vertices.push(vertex);
891                        new_vertices.sort();
892
893                        // Check for duplicates
894                        let new_simplex = Simplex {
895                            vertices: new_vertices,
896                            dimension: target_dim,
897                        };
898
899                        if !higher_simplices.contains(&new_simplex) {
900                            higher_simplices.push(new_simplex);
901                        }
902                    }
903                }
904            }
905        }
906
907        Ok(higher_simplices)
908    }
909
910    /// Build Alpha complex (simplified)
911    fn build_alpha_complex(&self, points: &ArrayView2<F>) -> StatsResult<SimplicialComplex> {
912        // Simplified Alpha complex - would use Delaunay triangulation in practice
913        let distance_matrix = self.compute_distance_matrix(points)?;
914        self.build_vietoris_rips_complex(&distance_matrix)
915    }
916
917    /// Build Cech complex (simplified)
918    fn build_cech_complex(&self, points: &ArrayView2<F>) -> StatsResult<SimplicialComplex> {
919        // Simplified Cech complex - would use circumradius calculations in practice
920        let distance_matrix = self.compute_distance_matrix(points)?;
921        self.build_vietoris_rips_complex(&distance_matrix)
922    }
923
924    /// Compute persistent homology
925    fn compute_persistent_homology(
926        &self,
927        complex: &SimplicialComplex,
928    ) -> StatsResult<HashMap<usize, PersistenceDiagram<F>>> {
929        let mut persistence_diagrams = HashMap::new();
930
931        // Compute persistence for each dimension
932        for dim in 0..=complex.max_dimension {
933            let diagram = self.compute_persistence_for_dimension(complex, dim)?;
934            persistence_diagrams.insert(dim, diagram);
935        }
936
937        Ok(persistence_diagrams)
938    }
939
940    /// Compute persistence diagram for specific dimension
941    fn compute_persistence_for_dimension(
942        &self,
943        complex: &SimplicialComplex,
944        dimension: usize,
945    ) -> StatsResult<PersistenceDiagram<F>> {
946        // Simplified persistence computation
947        let num_features = complex
948            .simplices_by_dim
949            .get(dimension)
950            .map(|s| s.len())
951            .unwrap_or(0);
952
953        let mut points = Array2::zeros((num_features, 2));
954        let multiplicities = Array1::ones(num_features);
955
956        // Generate dummy birth-death pairs (would use actual persistence algorithm)
957        for i in 0..num_features {
958            let birth = F::from(i as f64 * 0.1).unwrap();
959            let death = birth + F::from(0.5).unwrap();
960            points[[i, 0]] = birth;
961            points[[i, 1]] = death;
962        }
963
964        Ok(PersistenceDiagram {
965            points,
966            multiplicities,
967            representatives: None,
968        })
969    }
970
971    /// Compute Betti numbers across filtration
972    fn compute_betti_numbers(&self, complex: &SimplicialComplex) -> StatsResult<Array2<usize>> {
973        let num_steps = self.config.filtration_config.num_steps;
974        let max_dim = complex.max_dimension;
975
976        let mut betti_numbers = Array2::zeros((num_steps, max_dim + 1));
977
978        // Simplified Betti number computation
979        for step in 0..num_steps {
980            for dim in 0..=max_dim {
981                let num_simplices = complex
982                    .simplices_by_dim
983                    .get(dim)
984                    .map(|s| s.len())
985                    .unwrap_or(0);
986                betti_numbers[[step, dim]] = num_simplices.saturating_sub(step * 10);
987            }
988        }
989
990        Ok(betti_numbers)
991    }
992
993    /// Compute persistent entropy
994    fn compute_persistent_entropy(
995        &self,
996        persistence_diagrams: &HashMap<usize, PersistenceDiagram<F>>,
997    ) -> StatsResult<Array1<F>> {
998        let mut entropies = Array1::zeros(persistence_diagrams.len());
999
1000        for (dim, diagram) in persistence_diagrams {
1001            let mut entropy = F::zero();
1002            let total_persistence = self.compute_total_persistence(diagram);
1003
1004            if total_persistence > F::zero() {
1005                for i in 0..diagram.points.nrows() {
1006                    let birth = diagram.points[[i, 0]];
1007                    let death = diagram.points[[i, 1]];
1008                    let persistence = death - birth;
1009
1010                    if persistence > F::zero() {
1011                        let prob = persistence / total_persistence;
1012                        entropy = entropy - prob * prob.ln();
1013                    }
1014                }
1015            }
1016
1017            entropies[*dim] = entropy;
1018        }
1019
1020        Ok(entropies)
1021    }
1022
1023    /// Compute total persistence in diagram
1024    fn compute_total_persistence(&self, diagram: &PersistenceDiagram<F>) -> F {
1025        let mut total = F::zero();
1026        for i in 0..diagram.points.nrows() {
1027            let birth = diagram.points[[i, 0]];
1028            let death = diagram.points[[i, 1]];
1029            total = total + (death - birth);
1030        }
1031        total
1032    }
1033
1034    /// Compute Mapper graph
1035    fn compute_mapper(&self, points: &ArrayView2<F>) -> StatsResult<MapperGraph<F>> {
1036        let _n_points_ = points.dim();
1037
1038        // Simplified Mapper implementation
1039        let mut nodes = HashMap::new();
1040        let mut edges = HashMap::new();
1041
1042        // Create some dummy nodes
1043        for i in 0..5 {
1044            let node = MapperNode {
1045                point_indices: vec![i, i + 1],
1046                size: 2,
1047                centroid: Array1::zeros(points.ncols()),
1048                average_filter_value: F::from(i as f64).unwrap(),
1049                diameter: F::one(),
1050            };
1051            nodes.insert(i, node);
1052        }
1053
1054        // Create some dummy edges
1055        for i in 0..4 {
1056            let edge = MapperEdge {
1057                shared_points: 1,
1058                weight: F::one(),
1059                shared_indices: vec![i + 1],
1060            };
1061            edges.insert((i, i + 1), edge);
1062        }
1063
1064        let statistics = GraphStatistics {
1065            num_nodes: nodes.len(),
1066            num_edges: edges.len(),
1067            num_components: 1,
1068            average_nodesize: F::from(2.0).unwrap(),
1069            graph_diameter: 4,
1070            average_path_length: F::from(2.0).unwrap(),
1071            clustering_coefficient: F::zero(),
1072        };
1073
1074        Ok(MapperGraph {
1075            nodes,
1076            edges,
1077            node_positions: None,
1078            statistics,
1079        })
1080    }
1081
1082    /// Multi-scale topological analysis
1083    fn multiscale_analysis(&mut self, points: &ArrayView2<F>) -> StatsResult<MultiscaleResults<F>> {
1084        let num_scales = self.config.multiscale_config.num_scales;
1085        let (min_scale, max_scale) = self.config.multiscale_config.scale_range;
1086
1087        let mut scales = Array1::zeros(num_scales);
1088        let mut scale_diagrams = Vec::new();
1089
1090        // Generate scales
1091        for i in 0..num_scales {
1092            let t = F::from(i).unwrap() / F::from(num_scales - 1).unwrap();
1093            scales[i] = min_scale + t * (max_scale - min_scale);
1094        }
1095
1096        // Analyze at each scale
1097        for &scale in scales.iter() {
1098            // Temporarily modify config for this scale
1099            let original_max_epsilon = self.config.filtration_config.max_epsilon;
1100            self.config.filtration_config.max_epsilon = scale;
1101
1102            let complex = self.build_simplicial_complex(points)?;
1103            let diagrams = self.compute_persistent_homology(&complex)?;
1104            scale_diagrams.push(diagrams);
1105
1106            // Restore original config
1107            self.config.filtration_config.max_epsilon = original_max_epsilon;
1108        }
1109
1110        // Compute summary statistics
1111        let entropy_curve = Array1::zeros(num_scales);
1112        let total_persistence = Array1::zeros(num_scales);
1113        let feature_count = Array1::zeros(num_scales);
1114        let stability_measures = Array1::ones(num_scales);
1115
1116        let summary_statistics = MultiscaleSummary {
1117            entropy_curve,
1118            total_persistence,
1119            feature_count,
1120            stability_measures,
1121        };
1122
1123        Ok(MultiscaleResults {
1124            scale_diagrams,
1125            scales,
1126            summary_statistics,
1127            scale_space: None,
1128        })
1129    }
1130
1131    /// Topological statistical inference
1132    fn topological_inference(
1133        &self,
1134        points: &ArrayView2<F>,
1135        persistence_diagrams: &HashMap<usize, PersistenceDiagram<F>>,
1136    ) -> StatsResult<TopologicalInferenceResults<F>> {
1137        let mut test_statistics = HashMap::new();
1138        let mut p_values = HashMap::new();
1139        let mut confidence_intervals = HashMap::new();
1140        let mut critical_values = HashMap::new();
1141
1142        // Compute test statistics for each dimension
1143        for (dim, diagram) in persistence_diagrams {
1144            let test_name = format!("dimension_{}", dim);
1145
1146            // Example: total persistence test statistic
1147            let total_pers = self.compute_total_persistence(diagram);
1148            test_statistics.insert(test_name.clone(), total_pers);
1149
1150            // Simplified p-value (would use proper null distribution)
1151            p_values.insert(test_name.clone(), F::from(0.05).unwrap());
1152
1153            // Simplified confidence interval
1154            let ci_width = total_pers * F::from(0.1).unwrap();
1155            confidence_intervals.insert(
1156                test_name.clone(),
1157                (total_pers - ci_width, total_pers + ci_width),
1158            );
1159
1160            // Simplified critical value
1161            critical_values.insert(test_name, total_pers * F::from(1.5).unwrap());
1162        }
1163
1164        Ok(TopologicalInferenceResults {
1165            test_statistics,
1166            p_values,
1167            confidence_intervals,
1168            bootstrap_distributions: None,
1169            critical_values,
1170        })
1171    }
1172
1173    /// Extract comprehensive topological features
1174    fn extract_topological_features(
1175        &self,
1176        data: &ArrayView2<F>,
1177    ) -> StatsResult<TopologicalFeatures<F>> {
1178        let (_n_samples_, n_features) = data.dim();
1179
1180        // Persistent homology features
1181        let persistence_features = self.extract_persistence_features(data)?;
1182
1183        // Persistence images - placeholder implementation
1184        let persistence_images = Array2::zeros((10, 10)); // Placeholder 10x10 persistence image
1185
1186        // Persistence landscapes - placeholder implementation
1187        let persistence_landscapes = Array2::zeros((5, 20)); // Placeholder landscape representation
1188
1189        // Betti curves - placeholder implementation
1190        let betti_curves = Array2::zeros((3, 10)); // Placeholder Betti curves for dimensions 0, 1, 2
1191
1192        // Euler characteristic curves - placeholder implementation
1193        let euler_curves = Array1::zeros(10); // Placeholder Euler characteristic curve
1194
1195        // Topological entropy features - placeholder implementation
1196        let entropy_features = TopologicalEntropyFeatures {
1197            persistent_entropy: F::from(1.0).unwrap(),
1198            weighted_entropy: F::from(0.8).unwrap(),
1199            multiscale_entropy: Array1::ones(5),
1200            complexity: F::from(0.6).unwrap(),
1201        };
1202
1203        Ok(TopologicalFeatures {
1204            persistence_features,
1205            persistence_images,
1206            persistence_landscapes,
1207            betti_curves,
1208            euler_curves,
1209            entropy_features,
1210            dimensionality: n_features,
1211        })
1212    }
1213
1214    /// Extract persistence features from data
1215    fn extract_persistence_features(
1216        &self,
1217        data: &ArrayView2<F>,
1218    ) -> StatsResult<Vec<PersistenceFeature<F>>> {
1219        // Compute filtration at multiple scales
1220        let mut features = Vec::new();
1221        let num_scales = 10;
1222
1223        for scale_idx in 0..num_scales {
1224            let scale = F::from(scale_idx as f64 / num_scales as f64).unwrap();
1225            let epsilon = self.config.filtration_config.max_epsilon * scale;
1226
1227            // Build complex at this scale
1228            let analyzer = AdvancedTopologicalAnalyzer::new(self.config.clone());
1229            let distance_matrix = analyzer.compute_distance_matrix(data)?;
1230            let complex =
1231                self.build_vietoris_rips_complex_with_epsilon(&distance_matrix, epsilon)?;
1232
1233            // Compute persistence
1234            let diagrams = analyzer.compute_persistent_homology(&complex)?;
1235
1236            // Extract features from diagrams
1237            for (dim, diagram) in diagrams {
1238                for i in 0..diagram.points.nrows() {
1239                    let birth = diagram.points[[i, 0]];
1240                    let death = diagram.points[[i, 1]];
1241                    features.push(PersistenceFeature {
1242                        birth,
1243                        death,
1244                        persistence: death - birth,
1245                        dimension: dim,
1246                        scale: epsilon,
1247                        midlife: (birth + death) / F::from(2.0).unwrap(),
1248                    });
1249                }
1250            }
1251        }
1252
1253        Ok(features)
1254    }
1255
1256    /// Build Vietoris-Rips complex with specific epsilon
1257    fn build_vietoris_rips_complex_with_epsilon(
1258        &self,
1259        distance_matrix: &Array2<F>,
1260        epsilon: F,
1261    ) -> StatsResult<SimplicialComplex> {
1262        let n_points = distance_matrix.nrows();
1263        let mut simplices_by_dim = vec![Vec::new(); self.config.max_dimension + 1];
1264
1265        // Add vertices (0-simplices)
1266        for i in 0..n_points {
1267            simplices_by_dim[0].push(Simplex {
1268                vertices: vec![i],
1269                dimension: 0,
1270            });
1271        }
1272
1273        // Add edges (1-simplices)
1274        for i in 0..n_points {
1275            for j in (i + 1)..n_points {
1276                if distance_matrix[[i, j]] <= epsilon {
1277                    simplices_by_dim[1].push(Simplex {
1278                        vertices: vec![i, j],
1279                        dimension: 1,
1280                    });
1281                }
1282            }
1283        }
1284
1285        // Add higher-dimensional simplices
1286        for dim in 2..=self.config.max_dimension {
1287            if dim - 1 < simplices_by_dim.len() && !simplices_by_dim[dim - 1].is_empty() {
1288                simplices_by_dim[dim] = self.generate_higher_simplices(
1289                    &simplices_by_dim[dim - 1],
1290                    distance_matrix,
1291                    epsilon,
1292                    dim,
1293                )?;
1294            }
1295        }
1296
1297        Ok(SimplicialComplex {
1298            simplices_by_dim,
1299            max_dimension: self.config.max_dimension,
1300        })
1301    }
1302
1303    /// Get configuration
1304    pub fn get_config(&self) -> &TopologicalConfig<F> {
1305        &self.config
1306    }
1307
1308    /// Update configuration
1309    pub fn update_config(&mut self, config: TopologicalConfig<F>) {
1310        self.config = config;
1311    }
1312}
1313
1314impl<F> Default for TopologicalConfig<F>
1315where
1316    F: Float + NumCast + Copy + std::fmt::Display + SimdUnifiedOps + Send + Sync,
1317{
1318    fn default() -> Self {
1319        Self {
1320            max_dimension: 2,
1321            filtration_config: FiltrationConfig {
1322                filtration_type: FiltrationType::VietorisRips,
1323                distance_metric: DistanceMetric::Euclidean,
1324                max_epsilon: F::from(1.0).unwrap(),
1325                num_steps: 100,
1326                adaptive_steps: false,
1327            },
1328            persistence_config: PersistenceConfig {
1329                algorithm: PersistenceAlgorithm::StandardReduction,
1330                coefficient_field: CoeffientField::Z2,
1331                persistence_threshold: F::from(0.01).unwrap(),
1332                compute_entropy: true,
1333                stability_analysis: false,
1334            },
1335            mapper_config: MapperConfig {
1336                filter_functions: Vec::new(),
1337                cover_config: CoverConfig {
1338                    num_intervals: vec![10],
1339                    overlap_percent: F::from(0.3).unwrap(),
1340                    cover_type: CoverType::UniformInterval,
1341                },
1342                clustering_method: ClusteringMethod::SingleLinkage,
1343                overlap_threshold: F::from(0.1).unwrap(),
1344                simplification: SimplificationConfig {
1345                    edge_contraction: false,
1346                    vertex_removal: false,
1347                    threshold: 0.01,
1348                },
1349            },
1350            multiscale_config: MultiscaleConfig {
1351                scale_range: (F::from(0.1).unwrap(), F::from(2.0).unwrap()),
1352                num_scales: 10,
1353                scale_distribution: ScaleDistribution::Linear,
1354                merger_strategy: MergerStrategy::Union,
1355            },
1356            inference_config: TopologicalInferenceConfig {
1357                bootstrap_samples: 0,
1358                confidence_level: F::from(0.95).unwrap(),
1359                null_model: NullModel::UniformRandom,
1360                test_type: TopologicalTest::PersistentRankTest,
1361                multiple_comparisons: MultipleComparisonsCorrection::BenjaminiHochberg,
1362            },
1363            parallel_config: ParallelConfig::default(),
1364        }
1365    }
1366}
1367
1368impl<F> TopologicalConfig<F>
1369where
1370    F: Float + NumCast + Copy + std::fmt::Display + SimdUnifiedOps + Send + Sync,
1371{
1372    /// Advanced-advanced topological machine learning with persistent features
1373    pub fn topological_machine_learning(
1374        &mut self,
1375        data: &ArrayView2<F>,
1376        _labels: Option<&ArrayView1<F>>,
1377    ) -> StatsResult<TopologicalMLResult<F>> {
1378        // Extract topological features for machine learning
1379        let topological_features = (*self).extract_topological_features(data)?;
1380
1381        // Create simplified feature matrix from topological features
1382        let feature_matrix = Array2::zeros((data.nrows(), 10)); // Simplified feature representation
1383
1384        // Compute distance matrix for ML
1385        let analyzer = AdvancedTopologicalAnalyzer::new(self.clone());
1386        let kernel_matrix = analyzer.compute_distance_matrix(&feature_matrix.view())?;
1387
1388        // Simplified ML results for now
1389        let prediction_result = None; // Placeholder for future implementation
1390
1391        // Create proper clustering result
1392        let clustering_result = TopologicalClusteringResult {
1393            cluster_labels: Array1::zeros(data.nrows()),
1394            cluster_centers: Array2::zeros((3, data.ncols())), // Assume 3 clusters
1395            silhouette_score: F::from(0.5).unwrap(),
1396            inertia: F::from(1.0).unwrap(),
1397        };
1398
1399        let feature_importance = Array1::ones(feature_matrix.ncols()); // Placeholder importance
1400
1401        // Create topological signatures from the features
1402        let signatures = TopologicalSignatures {
1403            image_signature: topological_features
1404                .persistence_images
1405                .iter()
1406                .cloned()
1407                .collect(),
1408            landscape_signature: topological_features
1409                .persistence_landscapes
1410                .iter()
1411                .cloned()
1412                .collect(),
1413            betti_statistics: topological_features.betti_curves.iter().cloned().collect(),
1414            euler_statistics: topological_features.euler_curves.iter().cloned().collect(),
1415            entropy_vector: vec![topological_features.entropy_features.persistent_entropy],
1416        };
1417
1418        Ok(TopologicalMLResult {
1419            topological_features: feature_matrix,
1420            kernel_matrix,
1421            signatures,
1422            prediction_result,
1423            clustering_result,
1424            feature_importance,
1425            stability_score: F::from(0.95).unwrap(), // Placeholder stability score
1426        })
1427    }
1428
1429    /// Extract comprehensive topological features
1430    fn extract_topological_features(
1431        &self,
1432        data: &ArrayView2<F>,
1433    ) -> StatsResult<TopologicalFeatures<F>> {
1434        let (_n_samples_, n_features) = data.dim();
1435
1436        // Persistent homology features
1437        let persistence_features = self.extract_persistence_features(data)?;
1438
1439        // Persistence images - placeholder implementation
1440        let persistence_images = Array2::zeros((10, 10)); // Placeholder 10x10 persistence image
1441
1442        // Persistence landscapes - placeholder implementation
1443        let persistence_landscapes = Array2::zeros((5, 20)); // Placeholder landscape representation
1444
1445        // Betti curves - placeholder implementation
1446        let betti_curves = Array2::zeros((3, 10)); // Placeholder Betti curves for dimensions 0, 1, 2
1447
1448        // Euler characteristic curves - placeholder implementation
1449        let euler_curves = Array1::zeros(10); // Placeholder Euler characteristic curve
1450
1451        // Topological entropy features - placeholder implementation
1452        let entropy_features = TopologicalEntropyFeatures {
1453            persistent_entropy: F::from(1.0).unwrap(),
1454            weighted_entropy: F::from(0.8).unwrap(),
1455            multiscale_entropy: Array1::ones(5),
1456            complexity: F::from(0.6).unwrap(),
1457        };
1458
1459        Ok(TopologicalFeatures {
1460            persistence_features,
1461            persistence_images,
1462            persistence_landscapes,
1463            betti_curves,
1464            euler_curves,
1465            entropy_features,
1466            dimensionality: n_features,
1467        })
1468    }
1469
1470    /// Extract persistence features from data
1471    fn extract_persistence_features(
1472        &self,
1473        data: &ArrayView2<F>,
1474    ) -> StatsResult<Vec<PersistenceFeature<F>>> {
1475        // Compute filtration at multiple scales
1476        let mut features = Vec::new();
1477        let num_scales = 10;
1478
1479        for scale_idx in 0..num_scales {
1480            let scale = F::from(scale_idx as f64 / num_scales as f64).unwrap();
1481            let epsilon = self.filtration_config.max_epsilon * scale;
1482
1483            // Build complex at this scale
1484            let analyzer = AdvancedTopologicalAnalyzer::new(self.clone());
1485            let distance_matrix = analyzer.compute_distance_matrix(data)?;
1486            let complex =
1487                self.build_vietoris_rips_complex_with_epsilon(&distance_matrix, epsilon)?;
1488
1489            // Compute persistence
1490            let diagrams = analyzer.compute_persistent_homology(&complex)?;
1491
1492            // Extract features from diagrams
1493            for (dim, diagram) in diagrams {
1494                for i in 0..diagram.points.nrows() {
1495                    let birth = diagram.points[[i, 0]];
1496                    let death = diagram.points[[i, 1]];
1497                    features.push(PersistenceFeature {
1498                        birth,
1499                        death,
1500                        persistence: death - birth,
1501                        dimension: dim,
1502                        scale: epsilon,
1503                        midlife: (birth + death) / F::from(2.0).unwrap(),
1504                    });
1505                }
1506            }
1507        }
1508
1509        Ok(features)
1510    }
1511
1512    /// Build Vietoris-Rips complex with specific epsilon
1513    fn build_vietoris_rips_complex_with_epsilon(
1514        &self,
1515        distance_matrix: &Array2<F>,
1516        epsilon: F,
1517    ) -> StatsResult<SimplicialComplex> {
1518        let n_points = distance_matrix.nrows();
1519        let mut simplices_by_dim = vec![Vec::new(); self.max_dimension + 1];
1520
1521        // Add vertices (0-simplices)
1522        for i in 0..n_points {
1523            simplices_by_dim[0].push(Simplex {
1524                vertices: vec![i],
1525                dimension: 0,
1526            });
1527        }
1528
1529        // Add edges (1-simplices)
1530        for i in 0..n_points {
1531            for j in (i + 1)..n_points {
1532                if distance_matrix[[i, j]] <= epsilon {
1533                    simplices_by_dim[1].push(Simplex {
1534                        vertices: vec![i, j],
1535                        dimension: 1,
1536                    });
1537                }
1538            }
1539        }
1540
1541        // Add higher-dimensional simplices
1542        for dim in 2..=self.max_dimension {
1543            if dim - 1 < simplices_by_dim.len() && !simplices_by_dim[dim - 1].is_empty() {
1544                let analyzer = AdvancedTopologicalAnalyzer::new(self.clone());
1545                simplices_by_dim[dim] = analyzer.generate_higher_simplices(
1546                    &simplices_by_dim[dim - 1],
1547                    distance_matrix,
1548                    epsilon,
1549                    dim,
1550                )?;
1551            }
1552        }
1553
1554        Ok(SimplicialComplex {
1555            simplices_by_dim,
1556            max_dimension: self.max_dimension,
1557        })
1558    }
1559
1560    /// Compute persistence images for vectorization
1561    fn compute_persistence_images(
1562        &self,
1563        features: &[PersistenceFeature<F>],
1564    ) -> StatsResult<Array2<F>> {
1565        let resolution = 20; // 20x20 image
1566        let mut image = Array2::zeros((resolution, resolution));
1567
1568        // Find bounds for normalization
1569        let max_birth = features
1570            .iter()
1571            .map(|f| f.birth)
1572            .fold(F::zero(), |a, b| if a > b { a } else { b });
1573        let max_death = features
1574            .iter()
1575            .map(|f| f.death)
1576            .fold(F::zero(), |a, b| if a > b { a } else { b });
1577
1578        let max_val = if max_death > max_birth {
1579            max_death
1580        } else {
1581            max_birth
1582        };
1583
1584        if max_val > F::zero() {
1585            // Gaussian kernel parameters
1586            let sigma = F::from(0.1).unwrap() * max_val;
1587            let sigma_sq = sigma * sigma;
1588
1589            for feature in features {
1590                // Map to image coordinates
1591                let _birth_coord = (feature.birth / max_val * F::from(resolution as f64).unwrap())
1592                    .to_usize()
1593                    .unwrap_or(0)
1594                    .min(resolution - 1);
1595                let _death_coord = (feature.death / max_val * F::from(resolution as f64).unwrap())
1596                    .to_usize()
1597                    .unwrap_or(0)
1598                    .min(resolution - 1);
1599
1600                // Add Gaussian kernel centered at (birth, death)
1601                for i in 0..resolution {
1602                    for j in 0..resolution {
1603                        let x = F::from(i as f64).unwrap() / F::from(resolution as f64).unwrap()
1604                            * max_val;
1605                        let y = F::from(j as f64).unwrap() / F::from(resolution as f64).unwrap()
1606                            * max_val;
1607
1608                        let dist_sq = (x - feature.birth) * (x - feature.birth)
1609                            + (y - feature.death) * (y - feature.death);
1610                        let weight = (-dist_sq / sigma_sq).exp() * feature.persistence;
1611
1612                        image[[i, j]] = image[[i, j]] + weight;
1613                    }
1614                }
1615            }
1616        }
1617
1618        Ok(image)
1619    }
1620
1621    /// Compute persistence landscapes
1622    fn compute_persistence_landscapes(
1623        &self,
1624        features: &[PersistenceFeature<F>],
1625    ) -> StatsResult<Array2<F>> {
1626        let num_points = 100;
1627        let num_landscapes = 5;
1628        let mut landscapes = Array2::zeros((num_landscapes, num_points));
1629
1630        if features.is_empty() {
1631            return Ok(landscapes);
1632        }
1633
1634        // Find parameter range
1635        let min_birth = features
1636            .iter()
1637            .map(|f| f.birth)
1638            .fold(F::infinity(), |a, b| if a < b { a } else { b });
1639        let max_death = features
1640            .iter()
1641            .map(|f| f.death)
1642            .fold(F::neg_infinity(), |a, b| if a > b { a } else { b });
1643
1644        let range = max_death - min_birth;
1645        if range <= F::zero() {
1646            return Ok(landscapes);
1647        }
1648
1649        for point_idx in 0..num_points {
1650            let t = min_birth
1651                + F::from(point_idx as f64).unwrap() / F::from(num_points as f64).unwrap() * range;
1652
1653            // Compute landscape functions at parameter t
1654            let mut values = Vec::new();
1655
1656            for feature in features {
1657                if t >= feature.birth && t <= feature.death {
1658                    let value = if t <= (feature.birth + feature.death) / F::from(2.0).unwrap() {
1659                        t - feature.birth
1660                    } else {
1661                        feature.death - t
1662                    };
1663                    values.push(value);
1664                }
1665            }
1666
1667            // Sort values in descending order
1668            values.sort_by(|a, b| b.partial_cmp(a).unwrap_or(std::cmp::Ordering::Equal));
1669
1670            // Fill landscape levels
1671            for landscape_idx in 0..num_landscapes {
1672                if landscape_idx < values.len() {
1673                    landscapes[[landscape_idx, point_idx]] = values[landscape_idx];
1674                }
1675            }
1676        }
1677
1678        Ok(landscapes)
1679    }
1680
1681    /// Compute Betti curves
1682    fn compute_betti_curves(&self, features: &[PersistenceFeature<F>]) -> StatsResult<Array2<F>> {
1683        let num_points = 100;
1684        let max_dim = 3;
1685        let mut betti_curves = Array2::zeros((max_dim, num_points));
1686
1687        if features.is_empty() {
1688            return Ok(betti_curves);
1689        }
1690
1691        // Find parameter range
1692        let min_val = features
1693            .iter()
1694            .map(|f| f.birth)
1695            .fold(F::infinity(), |a, b| if a < b { a } else { b });
1696        let max_val = features
1697            .iter()
1698            .map(|f| f.death)
1699            .fold(F::neg_infinity(), |a, b| if a > b { a } else { b });
1700
1701        let range = max_val - min_val;
1702        if range <= F::zero() {
1703            return Ok(betti_curves);
1704        }
1705
1706        for point_idx in 0..num_points {
1707            let t = min_val
1708                + F::from(point_idx as f64).unwrap() / F::from(num_points as f64).unwrap() * range;
1709
1710            // Count active features for each dimension
1711            for dim in 0..max_dim {
1712                let count = features
1713                    .iter()
1714                    .filter(|f| f.dimension == dim && f.birth <= t && t < f.death)
1715                    .count();
1716
1717                betti_curves[[dim, point_idx]] = F::from(count).unwrap();
1718            }
1719        }
1720
1721        Ok(betti_curves)
1722    }
1723
1724    /// Compute Euler characteristic curves
1725    fn compute_euler_characteristic_curves(
1726        &self,
1727        features: &[PersistenceFeature<F>],
1728    ) -> StatsResult<Array1<F>> {
1729        let num_points = 100;
1730        let mut euler_curve = Array1::zeros(num_points);
1731
1732        if features.is_empty() {
1733            return Ok(euler_curve);
1734        }
1735
1736        // Find parameter range
1737        let min_val = features
1738            .iter()
1739            .map(|f| f.birth)
1740            .fold(F::infinity(), |a, b| if a < b { a } else { b });
1741        let max_val = features
1742            .iter()
1743            .map(|f| f.death)
1744            .fold(F::neg_infinity(), |a, b| if a > b { a } else { b });
1745
1746        let range = max_val - min_val;
1747        if range <= F::zero() {
1748            return Ok(euler_curve);
1749        }
1750
1751        for point_idx in 0..num_points {
1752            let t = min_val
1753                + F::from(point_idx as f64).unwrap() / F::from(num_points as f64).unwrap() * range;
1754
1755            // Compute Euler characteristic: χ = Σ(-1)^i * β_i
1756            let mut euler_char = F::zero();
1757
1758            for dim in 0..=3 {
1759                let betti_number = features
1760                    .iter()
1761                    .filter(|f| f.dimension == dim && f.birth <= t && t < f.death)
1762                    .count();
1763
1764                let sign = if dim % 2 == 0 { F::one() } else { -F::one() };
1765                euler_char = euler_char + sign * F::from(betti_number).unwrap();
1766            }
1767
1768            euler_curve[point_idx] = euler_char;
1769        }
1770
1771        Ok(euler_curve)
1772    }
1773
1774    /// Compute topological entropy features
1775    fn compute_topological_entropy_features(
1776        &self,
1777        features: &[PersistenceFeature<F>],
1778    ) -> StatsResult<TopologicalEntropyFeatures<F>> {
1779        // Persistent entropy
1780        let persistent_entropy = self.compute_persistent_entropy(features)?;
1781
1782        // Persistence-weighted entropy
1783        let weighted_entropy = self.compute_persistence_weighted_entropy(features)?;
1784
1785        // Multi-scale entropy
1786        let multiscale_entropy = self.compute_multiscale_topological_entropy(features)?;
1787
1788        // Topological complexity
1789        let complexity = self.compute_topological_complexity(features)?;
1790
1791        Ok(TopologicalEntropyFeatures {
1792            persistent_entropy,
1793            weighted_entropy,
1794            multiscale_entropy,
1795            complexity,
1796        })
1797    }
1798
1799    /// Compute persistent entropy
1800    fn compute_persistent_entropy(&self, features: &[PersistenceFeature<F>]) -> StatsResult<F> {
1801        if features.is_empty() {
1802            return Ok(F::zero());
1803        }
1804
1805        // Normalize persistence values
1806        let total_persistence = features
1807            .iter()
1808            .map(|f| f.persistence)
1809            .fold(F::zero(), |acc, p| acc + p);
1810
1811        if total_persistence <= F::zero() {
1812            return Ok(F::zero());
1813        }
1814
1815        // Compute Shannon entropy of persistence distribution
1816        let mut entropy = F::zero();
1817        for feature in features {
1818            if feature.persistence > F::zero() {
1819                let prob = feature.persistence / total_persistence;
1820                entropy = entropy - prob * prob.ln();
1821            }
1822        }
1823
1824        Ok(entropy)
1825    }
1826
1827    /// Compute persistence-weighted entropy
1828    fn compute_persistence_weighted_entropy(
1829        &self,
1830        features: &[PersistenceFeature<F>],
1831    ) -> StatsResult<F> {
1832        if features.is_empty() {
1833            return Ok(F::zero());
1834        }
1835
1836        let mut weighted_entropy = F::zero();
1837        let total_weight = features
1838            .iter()
1839            .map(|f| f.persistence * f.persistence)
1840            .fold(F::zero(), |acc, w| acc + w);
1841
1842        if total_weight > F::zero() {
1843            for feature in features {
1844                let weight = (feature.persistence * feature.persistence) / total_weight;
1845                if weight > F::zero() {
1846                    weighted_entropy = weighted_entropy - weight * weight.ln();
1847                }
1848            }
1849        }
1850
1851        Ok(weighted_entropy)
1852    }
1853
1854    /// Compute multi-scale topological entropy
1855    fn compute_multiscale_topological_entropy(
1856        &self,
1857        features: &[PersistenceFeature<F>],
1858    ) -> StatsResult<Array1<F>> {
1859        let num_scales = 5;
1860        let mut multiscale_entropy = Array1::zeros(num_scales);
1861
1862        for scale_idx in 0..num_scales {
1863            let scale_threshold = F::from((scale_idx + 1) as f64 / num_scales as f64).unwrap();
1864
1865            // Filter features by scale
1866            let filtered_features: Vec<_> = features
1867                .iter()
1868                .filter(|f| f.persistence >= scale_threshold * f.death)
1869                .cloned()
1870                .collect();
1871
1872            multiscale_entropy[scale_idx] = self.compute_persistent_entropy(&filtered_features)?;
1873        }
1874
1875        Ok(multiscale_entropy)
1876    }
1877
1878    /// Compute topological complexity
1879    fn compute_topological_complexity(&self, features: &[PersistenceFeature<F>]) -> StatsResult<F> {
1880        if features.is_empty() {
1881            return Ok(F::zero());
1882        }
1883
1884        // Combine multiple complexity measures
1885        let entropy = self.compute_persistent_entropy(features)?;
1886        let num_features = F::from(features.len()).unwrap();
1887        let avg_persistence = features
1888            .iter()
1889            .map(|f| f.persistence)
1890            .fold(F::zero(), |acc, p| acc + p)
1891            / num_features;
1892
1893        // Weighted complexity score
1894        let complexity = entropy * num_features.ln() * avg_persistence;
1895
1896        Ok(complexity)
1897    }
1898
1899    /// Compute topological signatures
1900    fn compute_topological_signatures(
1901        &self,
1902        features: &TopologicalFeatures<F>,
1903    ) -> StatsResult<TopologicalSignatures<F>> {
1904        // Flatten persistence images
1905        let image_signature = features.persistence_images.as_slice().unwrap().to_vec();
1906
1907        // Flatten persistence landscapes
1908        let landscape_signature = features.persistence_landscapes.as_slice().unwrap().to_vec();
1909
1910        // Statistics from Betti curves
1911        let betti_statistics = self.compute_curve_statistics(&features.betti_curves)?;
1912
1913        // Statistics from Euler curves
1914        let euler_statistics = self.compute_curve_statistics_1d(&features.euler_curves)?;
1915
1916        // Entropy features
1917        let entropy_vector = vec![
1918            features.entropy_features.persistent_entropy,
1919            features.entropy_features.weighted_entropy,
1920            features.entropy_features.complexity,
1921        ];
1922
1923        Ok(TopologicalSignatures {
1924            image_signature,
1925            landscape_signature,
1926            betti_statistics,
1927            euler_statistics,
1928            entropy_vector,
1929        })
1930    }
1931
1932    /// Compute statistics from 2D curves
1933    fn compute_curve_statistics(&self, curves: &Array2<F>) -> StatsResult<Vec<F>> {
1934        let mut statistics = Vec::new();
1935
1936        let (num_curves, num_points) = curves.dim();
1937
1938        for curve_idx in 0..num_curves {
1939            let curve = curves.row(curve_idx);
1940
1941            // Basic statistics
1942            let mean = curve.sum() / F::from(num_points).unwrap();
1943            let variance = curve
1944                .iter()
1945                .map(|&x| (x - mean) * (x - mean))
1946                .fold(F::zero(), |acc, x| acc + x)
1947                / F::from(num_points).unwrap();
1948            let std_dev = variance.sqrt();
1949
1950            // Extrema
1951            let min_val = curve
1952                .iter()
1953                .fold(F::infinity(), |a, &b| if a < b { a } else { b });
1954            let max_val = curve
1955                .iter()
1956                .fold(F::neg_infinity(), |a, &b| if a > b { a } else { b });
1957
1958            // Integral (area under curve)
1959            let integral = curve.sum() / F::from(num_points).unwrap();
1960
1961            statistics.extend_from_slice(&[mean, std_dev, min_val, max_val, integral]);
1962        }
1963
1964        Ok(statistics)
1965    }
1966
1967    /// Compute statistics from 1D curves
1968    fn compute_curve_statistics_1d(&self, curve: &Array1<F>) -> StatsResult<Vec<F>> {
1969        let num_points = curve.len();
1970
1971        if num_points == 0 {
1972            return Ok(vec![F::zero(); 5]);
1973        }
1974
1975        // Basic statistics
1976        let mean = curve.sum() / F::from(num_points).unwrap();
1977        let variance = curve
1978            .iter()
1979            .map(|&x| (x - mean) * (x - mean))
1980            .fold(F::zero(), |acc, x| acc + x)
1981            / F::from(num_points).unwrap();
1982        let std_dev = variance.sqrt();
1983
1984        // Extrema
1985        let min_val = curve
1986            .iter()
1987            .fold(F::infinity(), |a, &b| if a < b { a } else { b });
1988        let max_val = curve
1989            .iter()
1990            .fold(F::neg_infinity(), |a, &b| if a > b { a } else { b });
1991
1992        Ok(vec![mean, std_dev, min_val, max_val, curve.sum()])
1993    }
1994
1995    /// Encode persistent features for machine learning
1996    fn encode_persistent_features(
1997        &self,
1998        signatures: &TopologicalSignatures<F>,
1999    ) -> StatsResult<Array2<F>> {
2000        // Combine all signature vectors into feature matrix
2001        let mut all_features = Vec::new();
2002
2003        all_features.extend_from_slice(&signatures.image_signature);
2004        all_features.extend_from_slice(&signatures.landscape_signature);
2005        all_features.extend_from_slice(&signatures.betti_statistics);
2006        all_features.extend_from_slice(&signatures.euler_statistics);
2007        all_features.extend_from_slice(&signatures.entropy_vector);
2008
2009        // Create feature matrix (1 sample, n_features)
2010        let n_features = all_features.len();
2011        let mut feature_matrix = Array2::zeros((1, n_features));
2012
2013        for (i, &feature) in all_features.iter().enumerate() {
2014            feature_matrix[[0, i]] = feature;
2015        }
2016
2017        Ok(feature_matrix)
2018    }
2019
2020    /// Compute topological kernel matrix
2021    fn compute_topological_kernel_matrix(&self, features: &Array2<F>) -> StatsResult<Array2<F>> {
2022        let (n_samples_, n_features) = features.dim();
2023        let mut kernel_matrix = Array2::zeros((n_samples_, n_samples_));
2024
2025        // Gaussian RBF kernel with topological distance
2026        let sigma = F::from(1.0).unwrap();
2027        let sigma_sq = sigma * sigma;
2028
2029        for i in 0..n_samples_ {
2030            for j in 0..n_samples_ {
2031                let mut dist_sq = F::zero();
2032
2033                for k in 0..n_features {
2034                    let diff = features[[i, k]] - features[[j, k]];
2035                    dist_sq = dist_sq + diff * diff;
2036                }
2037
2038                kernel_matrix[[i, j]] = (-dist_sq / sigma_sq).exp();
2039            }
2040        }
2041
2042        Ok(kernel_matrix)
2043    }
2044
2045    /// Topological classification
2046    fn topological_classification(
2047        &self,
2048        features: &Array2<F>,
2049        labels: &ArrayView1<F>,
2050        kernel_matrix: &Array2<F>,
2051    ) -> StatsResult<TopologicalPredictionResult<F>> {
2052        let n_samples_ = features.nrows();
2053
2054        // Simplified topological SVM using kernel _matrix
2055        let mut predictions = Array1::zeros(n_samples_);
2056        let mut confidence_scores = Array1::zeros(n_samples_);
2057
2058        // Simple nearest neighbor classification using topological kernel
2059        for i in 0..n_samples_ {
2060            let mut best_similarity = F::zero();
2061            let mut predicted_label = labels[0];
2062
2063            for j in 0..n_samples_ {
2064                if i != j && kernel_matrix[[i, j]] > best_similarity {
2065                    best_similarity = kernel_matrix[[i, j]];
2066                    predicted_label = labels[j];
2067                }
2068            }
2069
2070            predictions[i] = predicted_label;
2071            confidence_scores[i] = best_similarity;
2072        }
2073
2074        // Compute accuracy
2075        let correct_predictions: usize = predictions
2076            .iter()
2077            .zip(labels.iter())
2078            .map(|(&pred, &true_label)| {
2079                if (pred - true_label).abs() < F::from(0.5).unwrap() {
2080                    1
2081                } else {
2082                    0
2083                }
2084            })
2085            .sum();
2086
2087        let accuracy = F::from(correct_predictions as f64 / n_samples_ as f64).unwrap();
2088
2089        Ok(TopologicalPredictionResult {
2090            predictions,
2091            confidence_scores,
2092            accuracy,
2093            feature_weights: Array1::ones(features.ncols()),
2094        })
2095    }
2096
2097    /// Topological clustering
2098    fn topological_clustering(
2099        &self,
2100        features: &Array2<F>,
2101    ) -> StatsResult<TopologicalClusteringResult<F>> {
2102        let n_samples_ = features.nrows();
2103        let num_clusters = 3; // Simplified to 3 clusters
2104
2105        // Simple k-means clustering on topological features
2106        let mut cluster_labels = Array1::zeros(n_samples_);
2107        let mut cluster_centers = Array2::zeros((num_clusters, features.ncols()));
2108
2109        // Initialize centers randomly
2110        for i in 0..num_clusters {
2111            for j in 0..features.ncols() {
2112                cluster_centers[[i, j]] = F::from(i as f64 / num_clusters as f64).unwrap();
2113            }
2114        }
2115
2116        // Simple assignment based on distance to centers
2117        for i in 0..n_samples_ {
2118            let mut best_distance = F::infinity();
2119            let mut best_cluster = 0;
2120
2121            for cluster in 0..num_clusters {
2122                let mut distance = F::zero();
2123                for j in 0..features.ncols() {
2124                    let diff = features[[i, j]] - cluster_centers[[cluster, j]];
2125                    distance = distance + diff * diff;
2126                }
2127
2128                if distance < best_distance {
2129                    best_distance = distance;
2130                    best_cluster = cluster;
2131                }
2132            }
2133
2134            cluster_labels[i] = F::from(best_cluster).unwrap();
2135        }
2136
2137        // Compute clustering quality (simplified silhouette score)
2138        let silhouette_score = F::from(0.7).unwrap(); // Placeholder
2139
2140        Ok(TopologicalClusteringResult {
2141            cluster_labels,
2142            cluster_centers,
2143            silhouette_score,
2144            inertia: F::from(100.0).unwrap(),
2145        })
2146    }
2147
2148    /// Analyze topological feature importance
2149    fn analyze_topological_feature_importance(
2150        &self,
2151        features: &Array2<F>,
2152        labels: Option<&ArrayView1<F>>,
2153    ) -> StatsResult<Array1<F>> {
2154        let (_, n_features) = features.dim();
2155        let mut importance_scores = Array1::zeros(n_features);
2156
2157        if let Some(labels) = labels {
2158            // Compute feature importance based on correlation with labels
2159            for j in 0..n_features {
2160                let feature_col = features.column(j);
2161                let correlation = self.compute_correlation(&feature_col, labels)?;
2162                importance_scores[j] = correlation.abs();
2163            }
2164        } else {
2165            // Compute feature importance based on variance
2166            for j in 0..n_features {
2167                let feature_col = features.column(j);
2168                let mean = feature_col.sum() / F::from(feature_col.len()).unwrap();
2169                let variance = feature_col
2170                    .iter()
2171                    .map(|&x| (x - mean) * (x - mean))
2172                    .fold(F::zero(), |acc, x| acc + x)
2173                    / F::from(feature_col.len()).unwrap();
2174
2175                importance_scores[j] = variance;
2176            }
2177        }
2178
2179        Ok(importance_scores)
2180    }
2181
2182    /// Compute correlation between two arrays
2183    fn compute_correlation(&self, x: &ArrayView1<F>, y: &ArrayView1<F>) -> StatsResult<F> {
2184        let n = x.len();
2185        if n != y.len() || n == 0 {
2186            return Ok(F::zero());
2187        }
2188
2189        let n_f = F::from(n).unwrap();
2190        let mean_x = x.sum() / n_f;
2191        let mean_y = y.sum() / n_f;
2192
2193        let mut num = F::zero();
2194        let mut den_x = F::zero();
2195        let mut den_y = F::zero();
2196
2197        for i in 0..n {
2198            let dx = x[i] - mean_x;
2199            let dy = y[i] - mean_y;
2200
2201            num = num + dx * dy;
2202            den_x = den_x + dx * dx;
2203            den_y = den_y + dy * dy;
2204        }
2205
2206        let denominator = (den_x * den_y).sqrt();
2207        if denominator > F::zero() {
2208            Ok(num / denominator)
2209        } else {
2210            Ok(F::zero())
2211        }
2212    }
2213
2214    /// Compute topological stability score
2215    fn compute_topological_stability(
2216        &self,
2217        signatures: &TopologicalSignatures<F>,
2218    ) -> StatsResult<F> {
2219        // Simplified stability score based on signature consistency
2220        let image_norm = signatures
2221            .image_signature
2222            .iter()
2223            .map(|&x| x * x)
2224            .fold(F::zero(), |acc, x| acc + x)
2225            .sqrt();
2226
2227        let landscape_norm = signatures
2228            .landscape_signature
2229            .iter()
2230            .map(|&x| x * x)
2231            .fold(F::zero(), |acc, x| acc + x)
2232            .sqrt();
2233
2234        let entropy_norm = signatures
2235            .entropy_vector
2236            .iter()
2237            .map(|&x| x * x)
2238            .fold(F::zero(), |acc, x| acc + x)
2239            .sqrt();
2240
2241        // Combine norms as stability measure
2242        let stability = (image_norm + landscape_norm + entropy_norm) / F::from(3.0).unwrap();
2243
2244        Ok(stability)
2245    }
2246
2247    /// Get configuration
2248    pub fn get_config(&self) -> &TopologicalConfig<F> {
2249        self
2250    }
2251
2252    /// Update configuration
2253    pub fn update_config(&mut self, config: TopologicalConfig<F>) {
2254        *self = config;
2255    }
2256}
2257
2258/// Persistence feature for machine learning
2259#[derive(Debug, Clone)]
2260pub struct PersistenceFeature<F> {
2261    pub birth: F,
2262    pub death: F,
2263    pub persistence: F,
2264    pub dimension: usize,
2265    pub scale: F,
2266    pub midlife: F,
2267}
2268
2269/// Comprehensive topological features
2270#[derive(Debug, Clone)]
2271pub struct TopologicalFeatures<F> {
2272    pub persistence_features: Vec<PersistenceFeature<F>>,
2273    pub persistence_images: Array2<F>,
2274    pub persistence_landscapes: Array2<F>,
2275    pub betti_curves: Array2<F>,
2276    pub euler_curves: Array1<F>,
2277    pub entropy_features: TopologicalEntropyFeatures<F>,
2278    pub dimensionality: usize,
2279}
2280
2281/// Topological entropy features
2282#[derive(Debug, Clone)]
2283pub struct TopologicalEntropyFeatures<F> {
2284    pub persistent_entropy: F,
2285    pub weighted_entropy: F,
2286    pub multiscale_entropy: Array1<F>,
2287    pub complexity: F,
2288}
2289
2290/// Topological signatures for ML
2291#[derive(Debug, Clone)]
2292pub struct TopologicalSignatures<F> {
2293    pub image_signature: Vec<F>,
2294    pub landscape_signature: Vec<F>,
2295    pub betti_statistics: Vec<F>,
2296    pub euler_statistics: Vec<F>,
2297    pub entropy_vector: Vec<F>,
2298}
2299
2300/// Results from topological machine learning
2301#[derive(Debug, Clone)]
2302pub struct TopologicalMLResult<F> {
2303    pub topological_features: Array2<F>,
2304    pub kernel_matrix: Array2<F>,
2305    pub signatures: TopologicalSignatures<F>,
2306    pub prediction_result: Option<TopologicalPredictionResult<F>>,
2307    pub clustering_result: TopologicalClusteringResult<F>,
2308    pub feature_importance: Array1<F>,
2309    pub stability_score: F,
2310}
2311
2312/// Results from topological prediction
2313#[derive(Debug, Clone)]
2314pub struct TopologicalPredictionResult<F> {
2315    pub predictions: Array1<F>,
2316    pub confidence_scores: Array1<F>,
2317    pub accuracy: F,
2318    pub feature_weights: Array1<F>,
2319}
2320
2321/// Results from topological clustering
2322#[derive(Debug, Clone)]
2323pub struct TopologicalClusteringResult<F> {
2324    pub cluster_labels: Array1<F>,
2325    pub cluster_centers: Array2<F>,
2326    pub silhouette_score: F,
2327    pub inertia: F,
2328}
2329
2330#[cfg(test)]
2331mod tests {
2332    use super::*;
2333    use scirs2_core::ndarray::array;
2334
2335    #[test]
2336    fn test_topological_analyzer_creation() {
2337        let config = TopologicalConfig::default();
2338        let analyzer = AdvancedTopologicalAnalyzer::<f64>::new(config);
2339
2340        assert_eq!(analyzer.config.max_dimension, 2);
2341        assert_eq!(analyzer.config.filtration_config.num_steps, 100);
2342    }
2343
2344    #[test]
2345    fn test_distance_computation() {
2346        let config = TopologicalConfig::default();
2347        let analyzer = AdvancedTopologicalAnalyzer::<f64>::new(config);
2348
2349        let p1 = array![0.0, 0.0];
2350        let p2 = array![3.0, 4.0];
2351
2352        let dist = analyzer
2353            .compute_distance(&p1.view(), &p2.view(), DistanceMetric::Euclidean)
2354            .unwrap();
2355
2356        assert!((dist - 5.0).abs() < 1e-10);
2357    }
2358
2359    #[test]
2360    fn test_point_cloud_analysis() {
2361        let config = TopologicalConfig::default();
2362        let mut analyzer = AdvancedTopologicalAnalyzer::<f64>::new(config);
2363
2364        // Simple 2D point cloud
2365        let points = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0], [0.5, 0.5]];
2366
2367        let result = analyzer.analyze_point_cloud(&points.view()).unwrap();
2368
2369        assert!(!result.persistence_diagrams.is_empty());
2370        assert!(result.betti_numbers.nrows() > 0);
2371        assert!(result.performance.timing.contains_key("total_analysis"));
2372    }
2373
2374    #[test]
2375    fn test_simplicial_complex_construction() {
2376        let config = TopologicalConfig::default();
2377        let mut analyzer = AdvancedTopologicalAnalyzer::<f64>::new(config);
2378
2379        let points = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0]];
2380
2381        let complex = analyzer.build_simplicial_complex(&points.view()).unwrap();
2382
2383        assert_eq!(complex.simplices_by_dim[0].len(), 3); // 3 vertices
2384        assert!(complex.simplices_by_dim[1].len() > 0); // Some edges
2385    }
2386
2387    #[test]
2388    fn test_persistence_computation() {
2389        let config = TopologicalConfig::default();
2390        let analyzer = AdvancedTopologicalAnalyzer::<f64>::new(config);
2391
2392        let complex = SimplicialComplex {
2393            simplices_by_dim: vec![
2394                vec![
2395                    Simplex {
2396                        vertices: vec![0],
2397                        dimension: 0,
2398                    },
2399                    Simplex {
2400                        vertices: vec![1],
2401                        dimension: 0,
2402                    },
2403                    Simplex {
2404                        vertices: vec![2],
2405                        dimension: 0,
2406                    },
2407                ],
2408                vec![
2409                    Simplex {
2410                        vertices: vec![0, 1],
2411                        dimension: 1,
2412                    },
2413                    Simplex {
2414                        vertices: vec![1, 2],
2415                        dimension: 1,
2416                    },
2417                ],
2418            ],
2419            max_dimension: 1,
2420        };
2421
2422        let diagrams = analyzer.compute_persistent_homology(&complex).unwrap();
2423
2424        assert!(diagrams.contains_key(&0)); // H_0
2425        assert!(diagrams.contains_key(&1)); // H_1
2426    }
2427}