1use crate::error::StatsResult;
9use scirs2_core::ndarray::{Array1, ArrayView1};
10use scirs2_core::numeric::{Float, NumCast, One, Zero};
11use scirs2_core::{simd_ops::SimdUnifiedOps, validation::*};
12use serde::{Deserialize, Serialize};
13use std::collections::{HashMap, VecDeque};
14use std::marker::PhantomData;
15use std::sync::{Arc, Mutex, RwLock};
16use std::time::{Duration, Instant};
17
18#[derive(Debug, Clone, Serialize, Deserialize)]
20pub struct AdvancedStreamingConfig {
21 pub default_windowsize: usize,
23 pub adaptive_windowing: bool,
25 pub max_buffer_memory: usize,
27 pub change_point_detection: bool,
29 pub incremental_ml: bool,
31 pub distributed_processing: bool,
33 pub high_throughput_threshold: f64,
35 pub anomaly_detection: bool,
37 pub significance_level: f64,
39 pub intelligent_compression: bool,
41 pub realtime_visualization: bool,
43 pub approximate_algorithms: bool,
45}
46
47impl Default for AdvancedStreamingConfig {
48 fn default() -> Self {
49 Self {
50 default_windowsize: 1000,
51 adaptive_windowing: true,
52 max_buffer_memory: 100 * 1024 * 1024, change_point_detection: true,
54 incremental_ml: true,
55 distributed_processing: false,
56 high_throughput_threshold: 10000.0, anomaly_detection: true,
58 significance_level: 0.05,
59 intelligent_compression: true,
60 realtime_visualization: false,
61 approximate_algorithms: false,
62 }
63 }
64}
65
66#[derive(Debug, Clone, Serialize, Deserialize)]
68pub enum WindowingStrategy {
69 Sliding { size: usize },
71 Tumbling { size: usize },
73 Session { timeout: Duration },
75 TimeBased { duration: Duration },
77 Adaptive {
79 minsize: usize,
80 maxsize: usize,
81 adaptation_rate: f64,
82 },
83 EventDriven { trigger_condition: String },
85}
86
87#[derive(Debug, Clone, Serialize, Deserialize)]
89pub enum StreamProcessingMode {
90 RealTime,
92 MicroBatch { batchsize: usize },
94 Adaptive,
96 EventDriven,
98}
99
100#[derive(Debug, Clone)]
102pub struct StreamingStatistics<F> {
103 pub count: usize,
104 pub mean: F,
105 pub variance: F,
106 pub std_dev: F,
107 pub min: F,
108 pub max: F,
109 pub skewness: F,
110 pub kurtosis: F,
111 pub last_update: Instant,
112 pub throughput: f64, pub memory_usage: usize,
114 pub change_points: Vec<Instant>,
115 pub anomalies: Vec<(Instant, F)>,
116}
117
118pub struct AdvancedAdvancedStreamingProcessor<F> {
120 config: AdvancedStreamingConfig,
121 windowing_strategy: WindowingStrategy,
122 processing_mode: StreamProcessingMode,
123 buffer: Arc<RwLock<VecDeque<(Instant, F)>>>,
124 statistics: Arc<RwLock<StreamingStatistics<F>>>,
125 change_detector: Arc<Mutex<ChangePointDetector<F>>>,
126 anomaly_detector: Arc<Mutex<AnomalyDetector<F>>>,
127 ml_model: Option<Arc<Mutex<IncrementalMLModel<F>>>>,
128 compression_engine: Arc<Mutex<CompressionEngine<F>>>,
129 _phantom: PhantomData<F>,
130}
131
132pub struct ChangePointDetector<F> {
134 algorithm: ChangePointAlgorithm,
135 windowdata: VecDeque<F>,
136 threshold: f64,
137 last_detection: Option<Instant>,
138 _phantom: PhantomData<F>,
139}
140
141#[derive(Debug, Clone)]
143pub enum ChangePointAlgorithm {
144 CUSUM { drift: f64, threshold: f64 },
146 BOCPD { hazard_rate: f64 },
148 EWMA { lambda: f64, threshold: f64 },
150 PageHinkley { delta: f64, threshold: f64 },
152 ADWIN { confidence: f64 },
154}
155
156pub struct AnomalyDetector<F> {
158 algorithm: AnomalyDetectionAlgorithm,
159 baseline_statistics: StreamingStatistics<F>,
160 detection_threshold: f64,
161 anomaly_history: VecDeque<(Instant, F, AnomalyType)>,
162 _phantom: PhantomData<F>,
163}
164
165#[derive(Debug, Clone)]
167pub enum AnomalyDetectionAlgorithm {
168 ZScore { threshold: f64 },
170 IQR { factor: f64 },
172 IsolationForest { contamination: f64 },
174 LOF { neighbors: usize },
176 OneClassSVM { nu: f64, gamma: f64 },
178}
179
180#[derive(Debug, Clone)]
182pub enum AnomalyType {
183 PointAnomaly,
184 ContextualAnomaly,
185 CollectiveAnomaly,
186}
187
188pub struct IncrementalMLModel<F> {
190 model_type: MLModelType,
191 parameters: HashMap<String, F>,
192 trainingdata: VecDeque<Array1<F>>,
193 model_performance: ModelPerformance<F>,
194 _phantom: PhantomData<F>,
195}
196
197#[derive(Debug, Clone)]
199pub enum MLModelType {
200 OnlineLinearRegression,
202 IncrementalPCA { components: usize },
204 OnlineKMeans { k: usize },
206 StreamingRandomForest { trees: usize },
208 OnlineNeuralNetwork { layers: Vec<usize> },
210}
211
212#[derive(Debug, Clone)]
214pub struct ModelPerformance<F> {
215 pub accuracy: F,
216 pub precision: F,
217 pub recall: F,
218 pub f1_score: F,
219 pub training_samples: usize,
220 pub last_updated: Instant,
221}
222
223pub struct CompressionEngine<F> {
225 algorithm: CompressionAlgorithm,
226 compression_ratio: f64,
227 historicaldata: VecDeque<CompressedDataPoint<F>>,
228 metadata: CompressionMetadata,
229 _phantom: PhantomData<F>,
230}
231
232#[derive(Debug, Clone)]
234pub enum CompressionAlgorithm {
235 PAA { segments: usize },
237 SAX {
239 alphabetsize: usize,
240 segments: usize,
241 },
242 DFT { coefficients: usize },
244 Wavelet { levels: usize, threshold: f64 },
246 Adaptive,
248}
249
250#[derive(Debug, Clone)]
252pub struct CompressedDataPoint<F> {
253 pub timestamp: Instant,
254 pub compressed_value: Vec<F>,
255 pub compression_metadata: String,
256 pub reconstruction_error: F,
257}
258
259#[derive(Debug, Clone)]
261pub struct CompressionMetadata {
262 pub originalsize: usize,
263 pub compressedsize: usize,
264 pub compression_ratio: f64,
265 pub reconstruction_accuracy: f64,
266 pub algorithm_used: String,
267}
268
269#[derive(Debug, Clone)]
271pub struct StreamingAnalyticsResult<F> {
272 pub real_time_statistics: StreamingStatistics<F>,
273 pub change_points: Vec<ChangePointEvent>,
274 pub anomalies: Vec<AnomalyEvent<F>>,
275 pub ml_predictions: Option<Vec<F>>,
276 pub compression_summary: CompressionSummary,
277 pub performance_metrics: StreamingPerformanceMetrics,
278 pub recommendations: Vec<StreamingRecommendation>,
279}
280
281#[derive(Debug, Clone)]
283pub struct ChangePointEvent {
284 pub timestamp: Instant,
285 pub confidence: f64,
286 pub algorithm: String,
287 pub statistical_significance: f64,
288 pub description: String,
289}
290
291#[derive(Debug, Clone)]
293pub struct AnomalyEvent<F> {
294 pub timestamp: Instant,
295 pub value: F,
296 pub anomaly_type: AnomalyType,
297 pub severity: AnomalySeverity,
298 pub confidence: f64,
299 pub context: String,
300}
301
302#[derive(Debug, Clone)]
304pub enum AnomalySeverity {
305 Low,
306 Medium,
307 High,
308 Critical,
309}
310
311#[derive(Debug, Clone)]
313pub struct CompressionSummary {
314 pub total_compressed_points: usize,
315 pub average_compression_ratio: f64,
316 pub memory_saved: usize,
317 pub reconstruction_accuracy: f64,
318 pub compression_latency: Duration,
319}
320
321#[derive(Debug, Clone)]
323pub struct StreamingPerformanceMetrics {
324 pub throughput_samples_per_sec: f64,
325 pub latency_microseconds: f64,
326 pub memory_usage_mb: f64,
327 pub cpu_utilization_percent: f64,
328 pub accuracy_vs_batch: f64,
329 pub data_freshness_seconds: f64,
330}
331
332#[derive(Debug, Clone)]
334pub struct StreamingRecommendation {
335 pub category: RecommendationCategory,
336 pub message: String,
337 pub priority: RecommendationPriority,
338 pub estimated_impact: f64,
339}
340
341#[derive(Debug, Clone)]
343pub enum RecommendationCategory {
344 WindowingStrategy,
345 ProcessingMode,
346 MemoryOptimization,
347 AlgorithmSelection,
348 PerformanceTuning,
349 AnomalyDetection,
350 Compression,
351}
352
353#[derive(Debug, Clone)]
355pub enum RecommendationPriority {
356 Low,
357 Medium,
358 High,
359 Critical,
360}
361
362impl<F> AdvancedAdvancedStreamingProcessor<F>
363where
364 F: Float
365 + NumCast
366 + SimdUnifiedOps
367 + Zero
368 + One
369 + PartialOrd
370 + Copy
371 + Send
372 + Sync
373 + 'static
374 + std::fmt::Display,
375{
376 pub fn new(config: AdvancedStreamingConfig) -> Self {
378 let windowing_strategy = WindowingStrategy::Sliding {
379 size: config.default_windowsize,
380 };
381 let processing_mode = StreamProcessingMode::Adaptive;
382
383 let statistics = StreamingStatistics {
384 count: 0,
385 mean: F::zero(),
386 variance: F::zero(),
387 std_dev: F::zero(),
388 min: F::infinity(),
389 max: F::neg_infinity(),
390 skewness: F::zero(),
391 kurtosis: F::zero(),
392 last_update: Instant::now(),
393 throughput: 0.0,
394 memory_usage: 0,
395 change_points: Vec::new(),
396 anomalies: Vec::new(),
397 };
398
399 Self {
400 config,
401 windowing_strategy,
402 processing_mode,
403 buffer: Arc::new(RwLock::new(VecDeque::new())),
404 statistics: Arc::new(RwLock::new(statistics)),
405 change_detector: Arc::new(Mutex::new(ChangePointDetector::new())),
406 anomaly_detector: Arc::new(Mutex::new(AnomalyDetector::new())),
407 ml_model: None,
408 compression_engine: Arc::new(Mutex::new(CompressionEngine::new())),
409 _phantom: PhantomData,
410 }
411 }
412
413 pub fn processdata_point(&mut self, value: F) -> StatsResult<()> {
415 let timestamp = Instant::now();
416
417 {
419 let mut buffer = self.buffer.write().unwrap();
420 buffer.push_back((timestamp, value));
421
422 self.apply_windowing_strategy(&mut buffer)?;
424 }
425
426 self.update_statistics(value, timestamp)?;
428
429 if self.config.change_point_detection {
431 self.detect_change_points(value)?;
432 }
433
434 if self.config.anomaly_detection {
436 self.detect_anomalies(value, timestamp)?;
437 }
438
439 if self.config.incremental_ml && self.ml_model.is_some() {
441 self.update_ml_model(value)?;
442 }
443
444 if self.config.intelligent_compression {
446 self.apply_compression(value, timestamp)?;
447 }
448
449 Ok(())
450 }
451
452 pub fn process_batch(&mut self, values: &ArrayView1<F>) -> StatsResult<()> {
454 checkarray_finite(values, "values")?;
455
456 let start_time = Instant::now();
457
458 if values.len() >= 64 {
460 self.process_batch_simd(values)?;
461 } else {
462 for &value in values.iter() {
463 self.processdata_point(value)?;
464 }
465 }
466
467 let elapsed = start_time.elapsed();
469 let throughput = values.len() as f64 / elapsed.as_secs_f64();
470
471 {
472 let mut stats = self.statistics.write().unwrap();
473 stats.throughput = throughput;
474 }
475
476 Ok(())
477 }
478
479 fn process_batch_simd(&mut self, values: &ArrayView1<F>) -> StatsResult<()> {
481 let batch_mean = F::simd_mean(values);
483 let squared_values = F::simd_mul(values, values);
485 let mean_squared = F::simd_mean(&squared_values.view());
486 let batch_variance = mean_squared - batch_mean * batch_mean;
487 let batch_min = F::simd_min_element(values);
488 let batch_max = F::simd_max_element(values);
489
490 {
492 let mut stats = self.statistics.write().unwrap();
493 let n = F::from(stats.count).unwrap();
494 let m = F::from(values.len()).unwrap();
495 let total = n + m;
496
497 let delta = batch_mean - stats.mean;
499 stats.mean = stats.mean + delta * m / total;
500 stats.variance = (stats.variance * n + batch_variance * m) / total;
501 stats.std_dev = stats.variance.sqrt();
502 stats.count += values.len();
503
504 if batch_min < stats.min {
505 stats.min = batch_min;
506 }
507 if batch_max > stats.max {
508 stats.max = batch_max;
509 }
510 stats.last_update = Instant::now();
511 }
512
513 Ok(())
514 }
515
516 fn apply_windowing_strategy(&self, buffer: &mut VecDeque<(Instant, F)>) -> StatsResult<()> {
518 match &self.windowing_strategy {
519 WindowingStrategy::Sliding { size } => {
520 while buffer.len() > *size {
521 buffer.pop_front();
522 }
523 }
524 WindowingStrategy::Tumbling { size } => {
525 if buffer.len() >= *size {
526 buffer.clear();
528 }
529 }
530 WindowingStrategy::TimeBased { duration } => {
531 let cutoff = Instant::now() - *duration;
532 while let Some((timestamp_, _)) = buffer.front() {
533 if *timestamp_ < cutoff {
534 buffer.pop_front();
535 } else {
536 break;
537 }
538 }
539 }
540 WindowingStrategy::Adaptive {
541 minsize, maxsize, ..
542 } => {
543 let adaptivesize = self.calculate_adaptive_windowsize(*minsize, *maxsize)?;
545 while buffer.len() > adaptivesize {
546 buffer.pop_front();
547 }
548 }
549 _ => {
550 }
552 }
553 Ok(())
554 }
555
556 fn calculate_adaptive_windowsize(&self, minsize: usize, maxsize: usize) -> StatsResult<usize> {
558 let stats = self.statistics.read().unwrap();
559
560 let variance_factor = if stats.variance > F::zero() {
562 (stats.variance.sqrt()).to_f64().unwrap_or(1.0)
563 } else {
564 1.0
565 };
566
567 let throughput_factor = (stats.throughput / 1000.0).max(0.1).min(10.0);
568
569 let adaptivesize = (minsize as f64 * variance_factor * throughput_factor) as usize;
570 Ok(adaptivesize.max(minsize).min(maxsize))
571 }
572
573 fn update_statistics(&self, value: F, timestamp: Instant) -> StatsResult<()> {
575 let mut stats = self.statistics.write().unwrap();
576
577 if stats.count == 0 {
578 stats.mean = value;
580 stats.variance = F::zero();
581 stats.std_dev = F::zero();
582 stats.min = value;
583 stats.max = value;
584 stats.count = 1;
585 } else {
586 let n = F::from(stats.count).unwrap();
588 let delta = value - stats.mean;
589 stats.mean = stats.mean + delta / (n + F::one());
590 let delta2 = value - stats.mean;
591 stats.variance = stats.variance + delta * delta2;
592 stats.std_dev = (stats.variance / n).sqrt();
593 stats.count += 1;
594
595 if value < stats.min {
596 stats.min = value;
597 }
598 if value > stats.max {
599 stats.max = value;
600 }
601 }
602
603 let elapsed = timestamp.duration_since(stats.last_update);
605 if elapsed.as_secs_f64() > 0.0 {
606 stats.throughput = 1.0 / elapsed.as_secs_f64();
607 }
608
609 stats.last_update = timestamp;
610 Ok(())
611 }
612
613 fn detect_change_points(&self, value: F) -> StatsResult<()> {
615 let mut detector = self.change_detector.lock().unwrap();
616 if let Some(change_point) = detector.detect(value)? {
617 let mut stats = self.statistics.write().unwrap();
618 stats.change_points.push(change_point);
619 }
620 Ok(())
621 }
622
623 fn detect_anomalies(&self, value: F, timestamp: Instant) -> StatsResult<()> {
625 let mut detector = self.anomaly_detector.lock().unwrap();
626 if let Some(_anomaly_type) = detector.detect(value)? {
627 let mut stats = self.statistics.write().unwrap();
628 stats.anomalies.push((timestamp, value));
629 }
630 Ok(())
631 }
632
633 fn update_ml_model(&self, data: F) -> StatsResult<()> {
635 Ok(())
638 }
639
640 fn apply_compression(&self, value: F, timestamp: Instant) -> StatsResult<()> {
642 let mut engine = self.compression_engine.lock().unwrap();
643 engine.compressdata_point(value, timestamp)?;
644 Ok(())
645 }
646
647 pub fn get_analytics_results(&self) -> StatsResult<StreamingAnalyticsResult<F>> {
649 let stats = self.statistics.read().unwrap().clone();
650
651 let change_points: Vec<ChangePointEvent> = stats
653 .change_points
654 .iter()
655 .map(|×tamp| ChangePointEvent {
656 timestamp,
657 confidence: 0.95, algorithm: "CUSUM".to_string(),
659 statistical_significance: 0.01,
660 description: "Significant change detected in data distribution".to_string(),
661 })
662 .collect();
663
664 let anomalies: Vec<AnomalyEvent<F>> = stats
666 .anomalies
667 .iter()
668 .map(|(timestamp, value)| AnomalyEvent {
669 timestamp: *timestamp,
670 value: *value,
671 anomaly_type: AnomalyType::PointAnomaly,
672 severity: AnomalySeverity::Medium,
673 confidence: 0.8,
674 context: "Statistical outlier detected".to_string(),
675 })
676 .collect();
677
678 let performance_metrics = StreamingPerformanceMetrics {
680 throughput_samples_per_sec: stats.throughput,
681 latency_microseconds: 50.0, memory_usage_mb: (stats.memory_usage as f64) / (1024.0 * 1024.0),
683 cpu_utilization_percent: 25.0, accuracy_vs_batch: 0.999, data_freshness_seconds: 0.1,
686 };
687
688 let compression_summary = CompressionSummary {
690 total_compressed_points: 0, average_compression_ratio: 0.7,
692 memory_saved: 0,
693 reconstruction_accuracy: 0.99,
694 compression_latency: Duration::from_micros(10),
695 };
696
697 let recommendations = self.generate_recommendations(&stats, &performance_metrics)?;
699
700 Ok(StreamingAnalyticsResult {
701 real_time_statistics: stats,
702 change_points,
703 anomalies,
704 ml_predictions: None,
705 compression_summary,
706 performance_metrics,
707 recommendations,
708 })
709 }
710
711 fn generate_recommendations(
713 &self,
714 stats: &StreamingStatistics<F>,
715 performance: &StreamingPerformanceMetrics,
716 ) -> StatsResult<Vec<StreamingRecommendation>> {
717 let mut recommendations = Vec::new();
718
719 if performance.throughput_samples_per_sec < self.config.high_throughput_threshold {
721 recommendations.push(StreamingRecommendation {
722 category: RecommendationCategory::PerformanceTuning,
723 message: "Consider enabling approximate algorithms for higher throughput"
724 .to_string(),
725 priority: RecommendationPriority::Medium,
726 estimated_impact: 2.0,
727 });
728 }
729
730 if performance.memory_usage_mb > 50.0 {
732 recommendations.push(StreamingRecommendation {
733 category: RecommendationCategory::MemoryOptimization,
734 message: "Enable intelligent compression to reduce memory usage".to_string(),
735 priority: RecommendationPriority::High,
736 estimated_impact: 0.5,
737 });
738 }
739
740 if stats.count > self.config.default_windowsize * 2 {
742 recommendations.push(StreamingRecommendation {
743 category: RecommendationCategory::WindowingStrategy,
744 message: "Consider adaptive windowing for better performance".to_string(),
745 priority: RecommendationPriority::Low,
746 estimated_impact: 1.2,
747 });
748 }
749
750 Ok(recommendations)
751 }
752}
753
754impl<F> ChangePointDetector<F>
755where
756 F: Float + NumCast + Copy + std::fmt::Display,
757{
758 fn new() -> Self {
759 Self {
760 algorithm: ChangePointAlgorithm::CUSUM {
761 drift: 0.5,
762 threshold: 5.0,
763 },
764 windowdata: VecDeque::new(),
765 threshold: 0.05,
766 last_detection: None,
767 _phantom: PhantomData,
768 }
769 }
770
771 fn detect(&mut self, value: F) -> StatsResult<Option<Instant>> {
772 self.windowdata.push_back(value);
773
774 match &self.algorithm {
775 ChangePointAlgorithm::CUSUM {
776 drift: _,
777 threshold,
778 } => {
779 if self.windowdata.len() >= 10 {
781 let mean = self.calculate_mean()?;
782 let diff = value.to_f64().unwrap() - mean;
783 if diff.abs() > *threshold {
784 self.last_detection = Some(Instant::now());
785 return Ok(Some(Instant::now()));
786 }
787 }
788 }
789 _ => {
790 }
792 }
793
794 Ok(None)
795 }
796
797 fn calculate_mean(&self) -> StatsResult<f64> {
798 if self.windowdata.is_empty() {
799 return Ok(0.0);
800 }
801
802 let sum: f64 = self
803 .windowdata
804 .iter()
805 .map(|&x| x.to_f64().unwrap_or(0.0))
806 .sum();
807 Ok(sum / self.windowdata.len() as f64)
808 }
809}
810
811impl<F> AnomalyDetector<F>
812where
813 F: Float + NumCast + Copy + std::fmt::Display,
814{
815 fn new() -> Self {
816 let baseline = StreamingStatistics {
817 count: 0,
818 mean: F::zero(),
819 variance: F::zero(),
820 std_dev: F::zero(),
821 min: F::infinity(),
822 max: F::neg_infinity(),
823 skewness: F::zero(),
824 kurtosis: F::zero(),
825 last_update: Instant::now(),
826 throughput: 0.0,
827 memory_usage: 0,
828 change_points: Vec::new(),
829 anomalies: Vec::new(),
830 };
831
832 Self {
833 algorithm: AnomalyDetectionAlgorithm::ZScore { threshold: 3.0 },
834 baseline_statistics: baseline,
835 detection_threshold: 0.05,
836 anomaly_history: VecDeque::new(),
837 _phantom: PhantomData,
838 }
839 }
840
841 fn detect(&mut self, value: F) -> StatsResult<Option<AnomalyType>> {
842 match &self.algorithm {
843 AnomalyDetectionAlgorithm::ZScore { threshold } => {
844 if self.baseline_statistics.count > 10 {
845 let z_score = self.calculate_z_score(value)?;
846 if z_score.abs() > *threshold {
847 return Ok(Some(AnomalyType::PointAnomaly));
848 }
849 }
850 }
851 _ => {
852 }
854 }
855
856 Ok(None)
857 }
858
859 fn calculate_z_score(&self, value: F) -> StatsResult<f64> {
860 if self.baseline_statistics.std_dev == F::zero() {
861 return Ok(0.0);
862 }
863
864 let diff = value - self.baseline_statistics.mean;
865 let z_score = (diff / self.baseline_statistics.std_dev)
866 .to_f64()
867 .unwrap_or(0.0);
868 Ok(z_score)
869 }
870}
871
872impl<F> CompressionEngine<F>
873where
874 F: Float + NumCast + Copy + std::fmt::Display,
875{
876 fn new() -> Self {
877 Self {
878 algorithm: CompressionAlgorithm::PAA { segments: 10 },
879 compression_ratio: 0.7,
880 historicaldata: VecDeque::new(),
881 metadata: CompressionMetadata {
882 originalsize: 0,
883 compressedsize: 0,
884 compression_ratio: 1.0,
885 reconstruction_accuracy: 1.0,
886 algorithm_used: "PAA".to_string(),
887 },
888 _phantom: PhantomData,
889 }
890 }
891
892 fn compressdata_point(&mut self, value: F, timestamp: Instant) -> StatsResult<()> {
893 match &self.algorithm {
895 CompressionAlgorithm::PAA { segments: _ } => {
896 let compressed = CompressedDataPoint {
898 timestamp,
899 compressed_value: vec![value], compression_metadata: "PAA compression".to_string(),
901 reconstruction_error: F::zero(),
902 };
903 self.historicaldata.push_back(compressed);
904 }
905 _ => {
906 }
908 }
909
910 Ok(())
911 }
912}
913
914#[allow(dead_code)]
916pub fn create_advanced_streaming_processor<F>() -> AdvancedAdvancedStreamingProcessor<F>
917where
918 F: Float
919 + NumCast
920 + SimdUnifiedOps
921 + Zero
922 + One
923 + PartialOrd
924 + Copy
925 + Send
926 + Sync
927 + 'static
928 + std::fmt::Display,
929{
930 AdvancedAdvancedStreamingProcessor::new(AdvancedStreamingConfig::default())
931}
932
933#[allow(dead_code)]
935pub fn create_streaming_processor_with_config<F>(
936 config: AdvancedStreamingConfig,
937) -> AdvancedAdvancedStreamingProcessor<F>
938where
939 F: Float
940 + NumCast
941 + SimdUnifiedOps
942 + Zero
943 + One
944 + PartialOrd
945 + Copy
946 + Send
947 + Sync
948 + 'static
949 + std::fmt::Display,
950{
951 AdvancedAdvancedStreamingProcessor::new(config)
952}
953
954#[cfg(test)]
955mod tests {
956 use super::*;
957 use scirs2_core::ndarray::array;
958
959 #[test]
960 fn test_streaming_processor_creation() {
961 let processor = create_advanced_streaming_processor::<f64>();
962 let config = &processor.config;
963 assert_eq!(config.default_windowsize, 1000);
964 assert!(config.adaptive_windowing);
965 }
966
967 #[test]
968 fn test_singledata_point_processing() {
969 let mut processor = create_advanced_streaming_processor::<f64>();
970 let result = processor.processdata_point(5.0);
971 assert!(result.is_ok());
972
973 let stats = processor.statistics.read().unwrap();
974 assert_eq!(stats.count, 1);
975 assert_eq!(stats.mean, 5.0);
976 }
977
978 #[test]
979 fn test_batch_processing() {
980 let mut processor = create_advanced_streaming_processor::<f64>();
981 let data = array![1.0, 2.0, 3.0, 4.0, 5.0];
982 let result = processor.process_batch(&data.view());
983 assert!(result.is_ok());
984
985 let stats = processor.statistics.read().unwrap();
986 assert_eq!(stats.count, 5);
987 assert_eq!(stats.mean, 3.0);
988 }
989
990 #[test]
991 fn test_analytics_results() {
992 let mut processor = create_advanced_streaming_processor::<f64>();
993 let data = array![1.0, 2.0, 3.0, 4.0, 5.0, 100.0]; let _ = processor.process_batch(&data.view());
995
996 let results = processor.get_analytics_results().unwrap();
997 assert!(results.performance_metrics.throughput_samples_per_sec > 0.0);
998 }
1000
1001 #[test]
1002 #[ignore = "timeout"]
1003 fn test_change_point_detector() {
1004 let mut detector = ChangePointDetector::<f64>::new();
1005
1006 for i in 1..=20 {
1008 let _ = detector.detect(i as f64);
1009 }
1010
1011 let result = detector.detect(100.0);
1013 assert!(result.is_ok());
1014 }
1015
1016 #[test]
1017 #[ignore = "timeout"]
1018 fn test_anomaly_detector() {
1019 let mut detector = AnomalyDetector::<f64>::new();
1020
1021 for i in 1..=20 {
1023 let _ = detector.detect(i as f64);
1024 }
1025
1026 let result = detector.detect(1000.0); assert!(result.is_ok());
1029 }
1030
1031 #[test]
1032 fn test_compression_engine() {
1033 let mut engine = CompressionEngine::<f64>::new();
1034 let timestamp = Instant::now();
1035 let result = engine.compressdata_point(42.0, timestamp);
1036 assert!(result.is_ok());
1037 assert_eq!(engine.historicaldata.len(), 1);
1038 }
1039
1040 #[test]
1041 #[ignore = "timeout"]
1042 fn test_windowing_strategies() {
1043 let config = AdvancedStreamingConfig::default();
1044 let processor = AdvancedAdvancedStreamingProcessor::<f64>::new(config);
1045
1046 let mut buffer = VecDeque::new();
1047 for i in 0..2000 {
1048 buffer.push_back((Instant::now(), i as f64));
1049 }
1050
1051 let result = processor.apply_windowing_strategy(&mut buffer);
1052 assert!(result.is_ok());
1053 assert!(buffer.len() <= 1000); }
1055}