1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
use std::fmt;
use std::marker::PhantomData;

use bytes::{Buf, BufMut};

use crate::wire_format::WireFormat;

/// Fixed or variable length string and its encoding.
#[derive(Debug, Clone)]
pub struct SbpString<T, E = Unterminated> {
    data: T,
    encoding: PhantomData<E>,
}

impl<T, E> SbpString<T, E>
where
    T: AsRef<[u8]>,
{
    /// Creates a new SbpString.
    pub fn new(data: T) -> Self {
        Self {
            data,
            encoding: PhantomData,
        }
    }

    /// Returns a byte slice of this SbpString's contents.
    pub fn as_bytes(&self) -> &[u8] {
        self.data.as_ref()
    }

    /// Returns a byte vector of this SbpString's contents.
    pub fn to_vec(&self) -> Vec<u8> {
        self.data.as_ref().to_vec()
    }
}

impl<E> From<String> for SbpString<Vec<u8>, E> {
    fn from(s: String) -> Self {
        SbpString::new(s.into_bytes())
    }
}

impl<E> From<Vec<u8>> for SbpString<Vec<u8>, E> {
    fn from(v: Vec<u8>) -> Self {
        SbpString::new(v)
    }
}

impl<T, E> fmt::Display for SbpString<T, E>
where
    T: AsRef<[u8]>,
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", String::from_utf8_lossy(self.as_bytes()))
    }
}

#[cfg(feature = "serde")]
impl<T, E> serde::Serialize for SbpString<T, E>
where
    T: AsRef<[u8]>,
{
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: serde::Serializer,
    {
        let s = String::from_utf8_lossy(self.as_bytes());
        serializer.serialize_str(&s)
    }
}

impl<E, const LEN: usize> WireFormat for SbpString<[u8; LEN], E> {
    const MIN_LEN: usize = LEN;

    fn len(&self) -> usize {
        LEN
    }

    fn write<B: BufMut>(&self, buf: &mut B) {
        self.data.write(buf)
    }

    fn parse_unchecked<B: Buf>(buf: &mut B) -> Self {
        let data: [u8; LEN] = WireFormat::parse_unchecked(buf);
        SbpString::new(data)
    }
}

macro_rules! forward_payload_vec {
    ($encoding:ty, $min_len:expr) => {
        impl WireFormat for SbpString<Vec<u8>, $encoding> {
            const MIN_LEN: usize = $min_len;

            fn len(&self) -> usize {
                self.data.len()
            }

            fn write<B: BufMut>(&self, buf: &mut B) {
                self.data.write(buf)
            }

            fn parse_unchecked<B: Buf>(buf: &mut B) -> Self {
                let data: Vec<u8> = WireFormat::parse_unchecked(buf);
                SbpString::new(data)
            }
        }
    };
}

/// Handles encoding and decoding of unterminated strings.
///
/// In SBP an unterminated string is a sequence of characters without a NULL
/// terminator to indicate the end of the string. Unterminated strings can only
/// appear at the end of an SBP payload, their length is indicated by the
/// remaining length of payload when processing incoming data.
///
/// For example, the string "text" would be represented on the wire as
///
/// text
#[derive(Debug, Clone, Copy)]
pub struct Unterminated;

forward_payload_vec!(Unterminated, 0);

/// Handles encoding and decoding of NULL terminated strings.
///
/// In SBP a NULL terminated string has the same definition as string in the C
/// language. On the wire it is a sequence of characters with a NULL character to
/// indicate the end of the string.
///
/// For example the string "text" would be represented on the wire as
///
/// text\0
#[derive(Debug, Clone, Copy)]
pub struct NullTerminated;

forward_payload_vec!(NullTerminated, 1);

/// Handles encoding and decoding of multipart strings.
///
/// In SBP a multipart string is not a single C string but a collection of
/// smaller strings (or sections) each separated by a NULL character.
///
/// For example, a multipart string might contain 3 sections - "one", "two", and
/// "three". On the wire this string would be encoded as
///
/// one\0two\0three\0
///
/// for a total of 14 bytes.
///
/// A multipart string might contain no sections in which case on the wire it
/// would consist of just a single NULL character.
#[derive(Debug, Clone, Copy)]
pub struct Multipart;

forward_payload_vec!(Multipart, 0);

/// Handles encoding and decoding of double NULL terminated strings.
///
/// In SBP double NULL terminated strings are rather similar to multipart strings
/// except they have an extra NULL terminator at the end of a sequence. A double
/// NULL terminated string is not a single C style string, rather it is a
/// collection of substrings (or sections) each separated on the wire with a NULL
/// terminator with the end of sequence being marked by an extra NULL terminator.
///
/// For example, a double NULL terminated string might contain 3 sections -
/// "one", "two", and "three". On the wire this string would be encoded as
///
/// one\0two\0three\0\0
///
/// for a total of 15 bytes.
///
/// A double NULL terminated string might contain no sections in which case on
/// the wire it would consists of just two NULL terminators with no printable
/// text.
#[derive(Debug, Clone, Copy)]
pub struct DoubleNullTerminated;

forward_payload_vec!(DoubleNullTerminated, 2);

#[cfg(test)]
mod tests {
    use bytes::BytesMut;

    use super::*;

    #[test]
    fn test_parse_sbp_string_vec() {
        let mut buf = BytesMut::from(&b"hi, imma string"[..]);

        let actual: SbpString<Vec<u8>> = WireFormat::parse_unchecked(&mut buf);
        assert_eq!(actual.to_string(), "hi, imma string".to_string());
        assert!(buf.is_empty());

        let actual: SbpString<Vec<u8>> = WireFormat::parse_unchecked(&mut buf);
        assert_eq!(actual.to_string(), "".to_string());
    }

    #[test]
    fn test_parse_sbp_string_array() {
        let mut buf = BytesMut::from(&b"hi, imma string"[..]);

        let actual: SbpString<[u8; 8]> = WireFormat::parse_unchecked(&mut buf);
        assert_eq!(actual.to_string(), "hi, imma".to_string());
        assert_eq!(buf.len(), 7);

        let actual: SbpString<[u8; 7]> = WireFormat::parse_unchecked(&mut buf);
        assert_eq!(actual.to_string(), " string".to_string());
        assert!(buf.is_empty());
    }

    #[test]
    fn test_parse_sbp_string_invalid_utf8() {
        // (9 * 8) - 2 = 70
        let mut buf = BytesMut::from(
            &[
                0x73, 0x6f, 0x6c, 0x75, 0x74, 0x69, 0x6f, 0x6e, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
                0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
                0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
                0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
                0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0xb6,
            ][..],
        );

        let sbp_string: SbpString<Vec<u8>> = WireFormat::parse_unchecked(&mut buf);
        // The last 0xb6 get's transformed into 3 UTF-8 bytes (� aka U+FFFD REPLACEMENT CHARACTER)
        assert_eq!(sbp_string.to_string().len(), 69 + 3);
        assert_eq!(sbp_string.to_vec().len(), 70);
    }
}