1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
//! A grid that stores it's internal data in a `Vec`. The size of the grid is constant
//! and elements cannot be removed, only changed. Provides very fast iteration and access speed.
//!
//! Elements can be inserted and accessed via their 1d index, 2d index, or
//! read/modified via iterators.
//!
//! # Example
//!
//! ```
//! use sark_grids::grid::Grid;
//!
//! let mut grid = Grid::default([10,10]);
//!
//! grid[0] = 'a';
//! grid[ [1,0] ] = 'b';
//!
//! assert_eq!('a', grid[0]);
//! assert_eq!('b', grid[ [1,0] ]);
//!
//! grid.insert_column_at([3,2], "hello".chars());
//! let hello: String = grid.column_iter(3).skip(2).take(5).collect();
//!
//! assert_eq!("hello", hello);
//! ```

use std::{
    iter::StepBy,
    ops::{Index, IndexMut, RangeBounds},
    slice::{Iter, IterMut},
};

use glam::{IVec2, UVec2};
use itertools::Itertools;

use crate::{world_grid::WorldGrid, Pivot};

/// A dense sized grid that stores it's elements in a `Vec`.
///
/// This grid assumes that `[0,0]` refers to the bottom-left most tile, and
/// `[width -1, height -1]` refers to the top-right-most tile.
#[derive(Debug, Default, Clone)]
pub struct Grid<T: Clone> {
    data: Vec<T>,
    size: UVec2,
}

impl<T: Clone> Grid<T> {
    /// Creates a new [Grid<T>] with the given default value set for all elements.
    pub fn new(value: T, size: [u32; 2]) -> Self {
        let size = UVec2::from(size);
        let len = (size.x * size.y) as usize;

        Self {
            data: vec![value; len],
            size,
        }
    }

    /// Creates a new [Grid<T>] with all elements initialized to default values.
    pub fn default(size: [u32; 2]) -> Self
    where
        T: Default,
    {
        Grid::new(T::default(), size)
    }

    /// An iterator over all elements in the grid.
    #[inline]
    pub fn iter(&self) -> Iter<T> {
        self.data.iter()
    }

    /// A mutable iterator over all elements in the grid.
    #[inline]
    pub fn iter_mut(&mut self) -> IterMut<T> {
        self.data.iter_mut()
    }

    /// An iterator over a single row of the grid.
    ///
    /// Goes from left to right.
    #[inline]
    pub fn row_iter(&self, y: usize) -> Iter<T> {
        let w = self.width() as usize;
        let i = y * w;
        self.data[i..i + w].iter()
    }

    /// A mutable iterator over a single row of the grid.
    ///
    /// Goes from left to right.
    #[inline]
    pub fn row_iter_mut(&mut self, y: usize) -> IterMut<T> {
        let w = self.width() as usize;
        let i = y * w;
        self.data[i..i + w].iter_mut()
    }

    /// Insert into a row of the grid using an iterator.
    ///
    /// Will insert up to the length of a row.
    pub fn insert_row(&mut self, y: usize, row: impl IntoIterator<Item = T>) {
        self.insert_row_at([0, y as i32], row);
    }

    /// Insert into a row of the grid using an iterator.
    ///
    /// Will insert up to the length of a row.
    pub fn insert_row_at(&mut self, xy: [i32; 2], row: impl IntoIterator<Item = T>) {
        let [x, y] = xy;
        let iter = self.row_iter_mut(y as usize).skip(x as usize);
        for (v, input) in iter.zip(row) {
            *v = input;
        }
    }

    /// Insert into a column of the grid using an iterator.
    ///
    /// Will insert up to the height of a column.
    pub fn insert_column(&mut self, x: usize, column: impl IntoIterator<Item = T>) {
        self.insert_column_at([x as i32, 0], column);
    }

    /// Insert into a column of the grid using an iterator.
    ///
    /// Will insert up to the height of a column.
    pub fn insert_column_at(&mut self, xy: [i32; 2], column: impl IntoIterator<Item = T>) {
        let [x, y] = xy;
        let iter = self.column_iter_mut(x as usize).skip(y as usize);
        for (v, input) in iter.zip(column) {
            *v = input;
        }
    }

    /// An iterator over a single column of the grid.
    ///
    /// Goes from bottom to top.
    #[inline]
    pub fn column_iter(&self, x: usize) -> StepBy<Iter<T>> {
        let w = self.width() as usize;
        return self.data[x..].iter().step_by(w);
    }

    /// A mutable iterator over a single column of the grid.
    ///
    /// Goes from bottom to top.
    #[inline]
    pub fn column_iter_mut(&mut self, x: usize) -> StepBy<IterMut<T>> {
        let w = self.width() as usize;
        return self.data[x..].iter_mut().step_by(w);
    }

    pub fn width(&self) -> u32 {
        self.size.x
    }

    pub fn height(&self) -> u32 {
        self.size.y
    }

    pub fn size(&self) -> UVec2 {
        self.size
    }

    /// How many tiles/elements are in the grid.
    #[allow(clippy::len_without_is_empty)]
    pub fn len(&self) -> usize {
        self.data.len()
    }

    /// Converts a 2d grid position to it's corresponding 1D index.
    #[inline(always)]
    pub fn pos_to_index(&self, pos: [i32; 2]) -> usize {
        (pos[1] * self.width() as i32 + pos[0]) as usize
    }

    /// Converts a 2d grid position to it's corresponding 1D index.
    #[inline(always)]
    pub fn upos_to_index(&self, pos: [u32; 2]) -> usize {
        (pos[1] * self.width() as u32 + pos[0]) as usize
    }

    /// Converts a 1d index to it's corresponding grid position.
    #[inline(always)]
    pub fn index_to_pos(&self, index: usize) -> IVec2 {
        let index = index as i32;
        let w = self.width() as i32;
        let x = index % w;
        let y = index / w;
        IVec2::new(x, y)
    }

    /// Converts a 1d index to it's corresponding grid position.
    #[inline(always)]
    pub fn index_to_upos(&self, index: usize) -> UVec2 {
        self.index_to_pos(index).as_uvec2()
    }

    /// Returns the index of the top row.
    #[inline(always)]
    pub fn top_index(&self) -> usize {
        (self.height() - 1) as usize
    }

    /// Returns the index of the bottom row (`0`).
    #[inline(always)]
    pub fn bottom_index(&self) -> usize {
        0
    }

    /// Returns the index of the left-most column (`0`).
    #[inline(always)]
    pub fn left_index(&self) -> usize {
        0
    }

    /// Returns the index of the right-most column.
    #[inline(always)]
    pub fn right_index(&self) -> usize {
        (self.width() - 1) as usize
    }

    /// Get the position of a tile on the grid at the given pivot.
    ///
    /// Note that for even-sized grids the "center" will be rounded down.
    /// For example, for a a 4x4 grid calling `pivot_position(Pivot::Center)` will return `(1,1)`.
    pub fn pivot_position(&self, pivot: Pivot) -> IVec2 {
        match pivot {
            Pivot::TopLeft => IVec2::new(0, self.top_index() as i32),
            Pivot::TopRight => IVec2::new(self.right_index() as i32, self.top_index() as i32),
            Pivot::Center => {
                let tr = self.pivot_position(Pivot::TopRight);
                (tr.as_vec2() / 2.0).as_ivec2()
            }
            Pivot::BottomLeft => IVec2::ZERO,
            Pivot::BottomRight => IVec2::new(self.right_index() as i32, 0),
        }
    }

    pub fn is_in_bounds(&self, pos: IVec2) -> bool {
        pos.cmpge(IVec2::ZERO).all() && pos.cmplt(self.size().as_ivec2()).all()
    }

    #[allow(dead_code)]
    pub(crate) fn debug_bounds_check(&self, pos: IVec2) {
        debug_assert!(
            self.is_in_bounds(pos),
            "Position {} is out of grid bounds {}",
            pos,
            self.size()
        );
    }

    /// An iterator over a rectangular portion of the grid defined by the given range.
    ///
    /// Yields `(IVec2, &T)`, where `IVec2` is the corresponding position of the value in the grid.
    pub fn rect_iter<RANGE: RangeBounds<[i32; 2]>>(
        &self,
        range: RANGE,
    ) -> impl Iterator<Item = (IVec2, &T)> {
        let (min, max) = ranges_to_min_max(range, self.size().as_ivec2());
        (min.y..=max.y)
            .cartesian_product(min.x..=max.x)
            .map(|(y, x)| ((IVec2::new(x, y)), &self[[x as u32, y as u32]]))
    }

    /// Returns an iterator which enumerates the 2d position of every value in the grid.
    ///
    /// Yields `(IVec2, &T)`, where `IVec2` is the corresponding position of the value in the grid.
    pub fn iter_2d(&self) -> impl Iterator<Item = (IVec2, &T)> {
        (0..self.height())
            .cartesian_product(0..self.width())
            .map(|(y, x)| IVec2::new(x as i32, y as i32))
            .zip(self.data.iter())
    }

    /// Returns a mutable iterator which enumerates the 2d position of every value in the grid.
    ///
    /// Yields `(IVec2, &mut T)`, where `IVec2` is the corresponding position of the value in the grid.
    pub fn iter_2d_mut(&mut self) -> impl Iterator<Item = (IVec2, &mut T)> {
        (0..self.height())
            .cartesian_product(0..self.width())
            .map(|(y, x)| IVec2::new(x as i32, y as i32))
            .zip(self.data.iter_mut())
    }

    /// Creates a [crate::world_grid::WorldGrid] from this grid with the given pivot. This can be used to translate
    /// between grid points and world space.
    pub fn to_world_pivot(&self, pivot: Pivot) -> WorldGrid {
        WorldGrid::origin(self.size.into(), pivot)
    }

    /// Creates a [crate::world_grid::WorldGrid] from this grid with the default bottom left pivot. This can be used to translate
    /// between grid points and world space.
    pub fn to_world(&self) -> WorldGrid {
        self.to_world_pivot(Pivot::BottomLeft)
    }
}

fn ranges_to_min_max<RANGE: RangeBounds<[i32; 2]>>(range: RANGE, max: IVec2) -> (IVec2, IVec2) {
    let min = match range.start_bound() {
        std::ops::Bound::Included([x, y]) => IVec2::new(*x, *y),
        std::ops::Bound::Excluded([x, y]) => IVec2::new(*x, *y),
        std::ops::Bound::Unbounded => IVec2::ZERO,
    };

    let max = match range.end_bound() {
        std::ops::Bound::Included([x, y]) => IVec2::new(*x, *y),
        std::ops::Bound::Excluded([x, y]) => IVec2::new(x - 1, y - 1),
        std::ops::Bound::Unbounded => max,
    };

    debug_assert!(min.cmpge(IVec2::ZERO).all() && min.cmplt(max).all());
    debug_assert!(max.cmple(max).all());

    (min, max)
}

impl<T: Clone> Index<[u32; 2]> for Grid<T> {
    type Output = T;

    #[inline(always)]
    fn index(&self, index: [u32; 2]) -> &Self::Output {
        &self.data[self.upos_to_index(index)]
    }
}

impl<T: Clone> IndexMut<[u32; 2]> for Grid<T> {
    #[inline(always)]
    fn index_mut(&mut self, pos: [u32; 2]) -> &mut Self::Output {
        let index = self.upos_to_index(pos);
        &mut self.data[index]
    }
}

impl<T: Clone> Index<usize> for Grid<T> {
    type Output = T;

    #[inline(always)]
    fn index(&self, index: usize) -> &Self::Output {
        &self.data[index]
    }
}

impl<T: Clone> IndexMut<usize> for Grid<T> {
    #[inline(always)]
    fn index_mut(&mut self, index: usize) -> &mut Self::Output {
        &mut self.data[index]
    }
}

impl<T: Clone> Index<IVec2> for Grid<T> {
    type Output = T;

    #[inline(always)]
    fn index(&self, index: IVec2) -> &Self::Output {
        &self.data[self.pos_to_index(index.into())]
    }
}

impl<T: Clone> IndexMut<IVec2> for Grid<T> {
    #[inline(always)]
    fn index_mut(&mut self, index: IVec2) -> &mut Self::Output {
        let index = self.pos_to_index(index.into());
        &mut self.data[index]
    }
}
impl<T: Clone> Index<UVec2> for Grid<T> {
    type Output = T;

    #[inline(always)]
    fn index(&self, index: UVec2) -> &Self::Output {
        &self.data[self.upos_to_index(index.into())]
    }
}

impl<T: Clone> IndexMut<UVec2> for Grid<T> {
    #[inline(always)]
    fn index_mut(&mut self, index: UVec2) -> &mut Self::Output {
        let index = self.upos_to_index(index.into());
        &mut self.data[index]
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn row_iter() {
        let mut grid = Grid::default([10, 15]);

        let chars = "hello".chars();

        for (elem, ch) in grid.row_iter_mut(3).take(5).zip(chars) {
            *elem = ch;
        }

        let hello = grid.row_iter(3).take(5).collect::<String>();

        assert_eq!("hello", hello);

        assert_eq!(grid.row_iter(6).len(), 10);
    }

    #[test]
    fn column_iter() {
        let mut grid = Grid::default([10, 15]);

        let chars = ['h', 'e', 'l', 'l', 'o'];

        for (elem, ch) in grid.column_iter_mut(5).take(5).zip(chars) {
            *elem = ch;
        }

        let hello = grid.column_iter(5).take(5).collect::<String>();

        assert_eq!("hello", hello);

        assert_eq!(grid.column_iter(2).len(), 15);
    }

    #[test]
    fn iter_2d() {
        let mut grid = Grid::new(0, [5, 3]);
        grid[[0, 0]] = 5;
        grid[[3, 1]] = 10;
        grid[[4, 2]] = 20;

        let vec: Vec<_> = grid.iter_2d().collect();

        assert_eq!(vec.len(), 5 * 3);
        assert_eq!(*vec[grid.pos_to_index([0, 0])].1, 5);
        assert_eq!(*vec[grid.pos_to_index([3, 1])].1, 10);
        assert_eq!(*vec[grid.pos_to_index([4, 2])].1, 20);

        let mut iter = grid.iter_2d();
        let (p, _) = iter.next().unwrap();
        assert_eq!(0, p.x);
        assert_eq!(0, p.y);
        let (p, _) = iter.next().unwrap();
        assert_eq!(1, p.x);
        assert_eq!(0, p.y);

        let (p, _) = iter.skip(3).next().unwrap();
        assert_eq!(0, p.x);
        assert_eq!(1, p.y);
    }

    #[test]
    fn iter() {
        let grid = Grid::new(5, [10, 10]);

        let v: Vec<_> = grid.iter().collect();

        assert_eq!(v.len(), 100);
        assert_eq!(*v[0], 5);
        assert_eq!(*v[99], 5);
    }

    #[test]
    fn iter_mut() {
        let mut grid = Grid::new(5, [10, 10]);

        for i in grid.iter_mut() {
            *i = 10;
        }

        assert_eq!(grid[0], 10);
    }

    #[test]
    fn positions() {
        let grid = Grid::new(0, [4, 4]);

        assert_eq!(grid.pivot_position(Pivot::TopLeft), IVec2::new(0, 3));
        assert_eq!(grid.pivot_position(Pivot::TopRight), IVec2::new(3, 3));
        assert_eq!(grid.pivot_position(Pivot::BottomRight), IVec2::new(3, 0));
        assert_eq!(grid.pivot_position(Pivot::BottomLeft), IVec2::new(0, 0));
        assert_eq!(grid.pivot_position(Pivot::Center), IVec2::new(1, 1));

        let grid = Grid::new(0, [5, 5]);

        assert_eq!(grid.pivot_position(Pivot::TopLeft), IVec2::new(0, 4));
        assert_eq!(grid.pivot_position(Pivot::TopRight), IVec2::new(4, 4));
        assert_eq!(grid.pivot_position(Pivot::BottomRight), IVec2::new(4, 0));
        assert_eq!(grid.pivot_position(Pivot::BottomLeft), IVec2::new(0, 0));
        assert_eq!(grid.pivot_position(Pivot::Center), IVec2::new(2, 2));
    }

    #[test]
    fn rect_iter() {
        let mut grid = Grid::new(0, [11, 15]);

        grid[[2, 2]] = 5_i32;
        grid[[4, 4]] = 10;

        let iter = grid.rect_iter([2, 2]..=[4, 4]);
        let vec: Vec<_> = iter.collect();

        assert_eq!(vec.len(), 9);
        assert_eq!(*vec[0].1, 5);
        assert_eq!(*vec[8].1, 10);

        let mut iter = grid.rect_iter([2, 2]..=[4, 4]);

        let (p, _) = iter.next().unwrap();
        assert_eq!(p, IVec2::new(2, 2));
        assert_eq!(iter.skip(7).next().unwrap().0, IVec2::new(4, 4));
    }

    #[test]
    fn column_insert() {
        let mut grid = Grid::default([10, 10]);

        grid.insert_column(3, "Hello".chars());

        let hello: String = grid.column_iter(3).take(5).collect();

        assert_eq!(hello, "Hello");
    }

    #[test]
    fn row_insert() {
        let mut grid = Grid::default([10, 10]);

        grid.insert_row(3, "Hello".chars());

        let hello: String = grid.row_iter(3).take(5).collect();

        assert_eq!(hello, "Hello");
    }
}